open_clip.patch 18.9 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
diff --git a/src/open_clip/factory.py b/src/open_clip/factory.py
index 86b4486..85fe0d4 100644
--- a/src/open_clip/factory.py
+++ b/src/open_clip/factory.py
@@ -14,7 +14,7 @@ from .convert import convert_state_dict
 from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
     resize_pos_embed, get_cast_dtype, resize_text_pos_embed, set_model_preprocess_cfg
 from .coca_model import CoCa
-from .loss import ClipLoss, DistillClipLoss, CoCaLoss, SigLipLoss
+from .loss import ClipLoss, DistillClipLoss, CoCaLoss, SigLipLoss, DRClipLoss
 from .openai import load_openai_model
 from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\
     list_pretrained_tags_by_model, download_pretrained_from_hf
@@ -344,6 +344,10 @@ def create_loss(args):
             rank=args.rank,
             world_size=args.world_size,
             use_horovod=args.horovod,
+            dist_logit_scale=args.distill_logit_scale,
+            teacher_dimension=args.distill_teacher_dimension,
+            distill_loss_weights=args.distill_loss_weights,
+            average_after_softmax=args.distill_average_after_softmax,
         )
     elif "coca" in args.model.lower():
         return CoCaLoss(
@@ -362,6 +366,19 @@ def create_loss(args):
             rank=args.rank,
             world_size=args.world_size,
         )
+    elif args.dataset_reinforcement:
+        return DRClipLoss(
+            local_loss=args.local_loss,
+            gather_with_grad=args.gather_with_grad,
+            cache_labels=True,
+            rank=args.rank,
+            world_size=args.world_size,
+            use_horovod=args.horovod,
+            dist_logit_scale=args.distill_logit_scale,
+            teacher_dimension=args.distill_teacher_dimension,
+            distill_loss_weights=args.distill_loss_weights,
+            average_after_softmax=args.distill_average_after_softmax,
+        )
     return ClipLoss(
         local_loss=args.local_loss,
         gather_with_grad=args.gather_with_grad,
diff --git a/src/open_clip/loss.py b/src/open_clip/loss.py
index 5beaab1..b40fdb9 100644
--- a/src/open_clip/loss.py
+++ b/src/open_clip/loss.py
@@ -1,6 +1,7 @@
 import torch
 import torch.nn as nn
 from torch.nn import functional as F
+import numpy as np
 
 try:
     import torch.distributed.nn
@@ -177,10 +178,59 @@ class CoCaLoss(ClipLoss):
         return clip_loss, caption_loss
 
 
+def dot_ensemble_features(feat_a, feat_b, logit_scale, dims):
+    """Compute sum_t Softmax(a_t @ b_t) for between features from an ensemble model."""
+    num_members = len(dims)
+    dims = np.cumsum([0] + dims)
+    logits = [
+        logit_scale * (feat_a[:, dims[i]:dims[i+1]] @ feat_b[dims[i]:dims[i+1], :])
+        for i in range(num_members)
+    ]
+    logits = sum([F.softmax(logit, dim=1) for logit in logits]) / num_members
+    return logits
+
+
 class DistillClipLoss(ClipLoss):
 
+    def __init__(
+        self,
+        *args,
+        teacher_dimension=[-1],
+        distill_loss_weights=[1.0, 1.0],
+        average_after_softmax=False,
+        dist_logit_scale=None,
+        **kwargs
+    ):
+        super().__init__(*args, **kwargs)
+        self.dist_logit_scale = dist_logit_scale
+        self.teacher_dimension = teacher_dimension
+        self.distill_loss_weights = distill_loss_weights
+        self.average_after_softmax = average_after_softmax
+
+    def get_logits_dist(self, image_features, text_features, logit_scale):
+        dims = self.teacher_dimension
+        if self.world_size > 1:
+            all_image_features, all_text_features = gather_features(
+                image_features, text_features,
+                self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
+
+            if self.local_loss:
+                logits_per_image = dot_ensemble_features(image_features, all_text_features.T, logit_scale, dims)
+                logits_per_text = dot_ensemble_features(text_features, all_image_features.T, logit_scale, dims)
+            else:
+                logits_per_image = dot_ensemble_features(all_image_features, all_text_features.T, logit_scale, dims)
+                logits_per_text = logits_per_image.T
+        else:
+            logits_per_image = dot_ensemble_features(image_features, text_features.T, logit_scale, dims)
+            logits_per_text = dot_ensemble_features(text_features, image_features.T, logit_scale, dims)
+        
+        return logits_per_image, logits_per_text
+
     def dist_loss(self, teacher_logits, student_logits):
-        return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0)
+        if self.average_after_softmax:
+            return -(teacher_logits * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0)
+        else:
+            return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0)
 
     def forward(
             self,
@@ -189,30 +239,82 @@ class DistillClipLoss(ClipLoss):
             logit_scale,
             dist_image_features,
             dist_text_features,
-            dist_logit_scale,
+            dist_logit_scale=None,
             output_dict=False,
     ):
         logits_per_image, logits_per_text = \
             self.get_logits(image_features, text_features, logit_scale)
 
-        dist_logits_per_image, dist_logits_per_text = \
-            self.get_logits(dist_image_features, dist_text_features, dist_logit_scale)
+        if self.dist_logit_scale is not None:
+            dist_logit_scale = self.dist_logit_scale
+
+        if self.average_after_softmax:
+            dist_logits_per_image, dist_logits_per_text = \
+                self.get_logits_dist(dist_image_features, dist_text_features, dist_logit_scale)
+        else:
+            dist_logits_per_image, dist_logits_per_text = \
+                self.get_logits(dist_image_features, dist_text_features, dist_logit_scale)
 
         labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0])
 
         contrastive_loss = (
             F.cross_entropy(logits_per_image, labels) +
             F.cross_entropy(logits_per_text, labels)
-        ) / 2
+        ) / 2 * self.distill_loss_weights[0]
 
         distill_loss = (
             self.dist_loss(dist_logits_per_image, logits_per_image) +
             self.dist_loss(dist_logits_per_text, logits_per_text)
-        ) / 2
+        ) / 2 * self.distill_loss_weights[1]
+
+        if output_dict:
+            return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss}
 
+        return contrastive_loss, distill_loss
+
+
+class DRClipLoss(DistillClipLoss):
+    def forward(
+            self,
+            image_features,
+            text_features,
+            logit_scale,
+            dist_image_features,
+            dist_text_features,
+            syn_text_features=None,
+            dist_syn_text_features=None,
+            output_dict=False,
+    ):
+        loss_gt = super().forward(
+            image_features,
+            text_features,
+            logit_scale,
+            dist_image_features,
+            dist_text_features,
+            output_dict=output_dict,
+        )
+        if syn_text_features is None:
+            return loss_gt
+
+        loss_syn = super().forward(
+            image_features,
+            syn_text_features,
+            logit_scale,
+            dist_image_features,
+            dist_syn_text_features,
+            output_dict=output_dict,
+        )
         if output_dict:
+            contrastive_loss = (
+                loss_gt["contrastive_loss"] + loss_syn["contrastive_loss"]
+            )
+            distill_loss = (
+                loss_gt["distill_loss"] + loss_syn["distill_loss"]
+            )
             return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss}
 
+        contrastive_loss = loss_gt[0] + loss_syn[0]
+        distill_loss = loss_gt[1] + loss_syn[1]
         return contrastive_loss, distill_loss
 
 
diff --git a/src/training/data.py b/src/training/data.py
index 07b9fee..41f868c 100644
--- a/src/training/data.py
+++ b/src/training/data.py
@@ -19,6 +19,7 @@ from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, IterableD
 from torch.utils.data.distributed import DistributedSampler
 from webdataset.filters import _shuffle
 from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample
+from training.dr.transforms import compose_from_config
 
 try:
     import horovod.torch as hvd
@@ -183,6 +184,63 @@ def log_and_continue(exn):
     return True
 
 
+def preprocess_dr(sample, dr_transforms, tokenizer, mix_synthetic, mix_synthetic_ratio):
+    """Preprocess image, text, synthetic-captions, and DR CLIP embeddings."""
+    # Preprocess image
+    # Sample an image augmentation
+    aug_idx = np.random.randint(0, len(sample["paug.json"]["param_aug"]))
+    params = sample["paug.json"]["param_aug"][aug_idx]
+    params = dr_transforms.decompress(params)
+    image = sample["image"].convert('RGB')
+    image, _ = dr_transforms.reapply(image, params)
+
+    # Preprocess text
+    texts = sample["text"]
+    texts = [texts] if not isinstance(texts, list) else texts
+    capi = np.random.randint(0, len(texts))
+    text = texts[capi]
+    text = tokenizer(text)[0]
+
+    # Preprocess synthetic text
+    scapi = np.random.randint(0, len(sample["syn.json"]["syn_text"]))
+    syn_text = sample["syn.json"]["syn_text"][scapi]
+    syn_text = tokenizer(syn_text)[0]
+
+    # Preprocess embeddings
+    if "npz" in sample:
+        image_emb = sample["npz"]["image_emb"][aug_idx]
+        text_emb_all = sample["npz"]["text_emb"]
+    elif "pth.gz" in sample:
+        image_emb = sample["pth.gz"]["image_emb"][aug_idx]
+        text_emb_all = sample["pth.gz"]["text_emb"]
+    text_emb = text_emb_all[capi]
+    syn_text_emb = text_emb_all[len(texts)+scapi]
+    if not isinstance(image_emb, torch.Tensor):
+        image_emb = torch.tensor(image_emb)
+        text_emb = torch.tensor(text_emb)
+        syn_text_emb = torch.tensor(syn_text_emb)
+    image_emb = image_emb.type(torch.float32)
+    text_emb = text_emb.type(torch.float32)
+    syn_text_emb = syn_text_emb.type(torch.float32)
+
+    if mix_synthetic:
+        if np.random.rand() < mix_synthetic_ratio:
+            text = syn_text
+            text_emb = syn_text_emb
+        # No double loss on gt/syn captions
+        syn_text = []
+        syn_text_emb = []
+
+    return {
+        'image': image,
+        'text': text,
+        'image_emb': image_emb,
+        'text_emb': text_emb,
+        "syn_text": syn_text,
+        'syn_text_emb': syn_text_emb,
+    }
+
+
 def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None):
     """Return function over iterator that groups key, value pairs into samples.
 
@@ -342,13 +400,13 @@ def get_wds_dataset(args, preprocess_img, is_train, epoch=0, floor=False, tokeni
                     'Please specify it via `--train-num-samples` if no dataset length info is present.')
     else:
         # Eval will just exhaust the iterator if the size is not specified.
-        num_samples = args.val_num_samples or 0 
+        num_samples = args.val_num_samples or 0
 
     shared_epoch = SharedEpoch(epoch=epoch)  # create a shared epoch store to sync epoch to dataloader worker proc
 
     if is_train and args.train_data_upsampling_factors is not None:
         assert resampled, "--train_data_upsampling_factors is only supported when sampling with replacement (with --dataset-resampled)."
-    
+
     if resampled:
         pipeline = [ResampledShards2(
             input_shards,
@@ -386,14 +444,53 @@ def get_wds_dataset(args, preprocess_img, is_train, epoch=0, floor=False, tokeni
             # at this point, we have an iterator over the shards assigned to each worker
             wds.tarfile_to_samples(handler=log_and_continue),
         ])
-    pipeline.extend([
-        wds.select(filter_no_caption_or_no_image),
-        wds.decode("pilrgb", handler=log_and_continue),
-        wds.rename(image="jpg;png;jpeg;webp", text="txt"),
-        wds.map_dict(image=preprocess_img, text=lambda text: tokenizer(text)[0]),
-        wds.to_tuple("image", "text"),
-        wds.batched(args.batch_size, partial=not is_train)
-    ])
+
+    if not args.dataset_reinforcement:
+        pipeline.extend([
+            wds.select(filter_no_caption_or_no_image),
+            wds.decode("pilrgba", handler=log_and_continue),
+            wds.rename(image="jpg;png;jpeg;webp", text="txt"),
+            wds.map_dict(image=preprocess_img, text=lambda text: tokenizer(text)[0]),
+            wds.to_tuple("image", "text"),
+            wds.batched(args.batch_size, partial=not is_train)
+        ])
+    else:
+        # Setup DR transformations
+        with open(args.dataset_reinforcement_config, 'r') as f:
+            rconfig = json.load(f)
+        rconfig_aug = rconfig["reinforce"]["image_augmentation"]
+        # Replace augmentation parameters where DR is flexible.
+        # DR also supports additional augmentations in args.aug-cfg but not
+        # implemented here.
+        from torchvision.transforms import RandomResizedCrop, Normalize
+        del rconfig_aug["normalize"]
+        for t in preprocess_img.transforms:
+            if isinstance(t, Normalize):
+                rconfig_aug["normalize"] = {"mean": t.mean, "std": t.std}
+            if isinstance(t, RandomResizedCrop):
+                # One can also pass image_size to dr_transforms.reapply to support
+                # variable resolution training
+                rconfig_aug["random_resized_crop"].update({
+                    "size": t.size,
+                    "interpolation": t.interpolation,
+                })
+        dr_transforms = compose_from_config(rconfig_aug)
+
+        pipeline.extend([
+            wds.select(filter_no_caption_or_no_image),
+            wds.decode("pilrgba", handler=log_and_continue),
+            wds.rename(image="jpg;png;jpeg;webp", text="txt"),
+            wds.map(
+                lambda sample: preprocess_dr(
+                    sample, dr_transforms,
+                    tokenizer,
+                    args.dataset_reinforcement_mix_synthetic,
+                    args.dataset_reinforcement_mix_synthetic_ratio,
+                )
+            ),
+            wds.to_tuple("image", "text", "image_emb", "text_emb", "syn_text", "syn_text_emb"),
+            wds.batched(args.batch_size, partial=not is_train)
+        ])
 
     dataset = wds.DataPipeline(*pipeline)
 
@@ -541,7 +638,7 @@ def get_dataset_fn(data_path, dataset_type):
                 f"Tried to figure out dataset type, but failed for extension {ext}.")
     else:
         raise ValueError(f"Unsupported dataset type: {dataset_type}")
-    
+
 
 def get_data(args, preprocess_fns, epoch=0, tokenizer=None):
     preprocess_train, preprocess_val = preprocess_fns
diff --git a/src/training/params.py b/src/training/params.py
index c3d1930..d7d7023 100644
--- a/src/training/params.py
+++ b/src/training/params.py
@@ -440,6 +440,26 @@ def parse_args(args):
         default=None,
         help='Which pre-trained weights to distill from, if any.'
     )
+    parser.add_argument(
+        "--distill-loss-weights",
+        type=float,
+        default=[1.0, 1.0],
+        nargs="+",
+        help='Tuple of [contrastive, distillation] loss weights if distillation is enabled.'
+    )
+    parser.add_argument(
+        "--distill-teacher-dimension",
+        type=int,
+        default=[-1],
+        nargs="+",
+        help="Number of dimensions for each teacher. Default: [-1]."
+    )
+    parser.add_argument(
+        "--distill-average-after-softmax",
+        default=False,
+        action="store_true",
+        help='For ensemble models in distillation, average logits after Softmax.'
+    )
     parser.add_argument(
         "--use-bnb-linear",
         default=None,
@@ -452,6 +472,37 @@ def parse_args(args):
         action="store_true",
         help='Use SigLip (sigmoid) loss.'
     )
+    parser.add_argument(
+        "--dataset-reinforcement",
+        default=False,
+        action="store_true",
+        help="If true, load image/text embeddings and synthetic captions from webdataset."
+    )
+    parser.add_argument(
+        "--dataset-reinforcement-config",
+        type=str,
+        default=None,
+        help="Pass the config file for dataset reinforcement."
+    )
+    parser.add_argument(
+        "--distill-logit-scale",
+        type=int,
+        default=None,
+        help="Logit scale for distillation loss. None means fetch it from the model_out."
+    )
+    parser.add_argument(
+        "--dataset-reinforcement-mix-synthetic",
+        default=False,
+        action="store_true",
+        help="Mix synthetic caption with ground-truth captions and randomly sample."
+    )
+    parser.add_argument(
+        "--dataset-reinforcement-mix-synthetic-ratio",
+        type=float,
+        default=0.0,
+        help="Mixing ration for synthetic vs ground-truth captions."
+        "0.0: all ground-truth and 1.0 means all synthetic."
+    )
 
     args = parser.parse_args(args)
 
diff --git a/src/training/train.py b/src/training/train.py
index a48a345..3a52abc 100644
--- a/src/training/train.py
+++ b/src/training/train.py
@@ -89,9 +89,12 @@ def train_one_epoch(model, data, loss, epoch, optimizer, scaler, scheduler, dist
         if not args.skip_scheduler:
             scheduler(step)
 
-        images, texts = batch
+        images, texts = batch[:2]
         images = images.to(device=device, dtype=input_dtype, non_blocking=True)
         texts = texts.to(device=device, non_blocking=True)
+        if args.dataset_reinforcement and not args.dataset_reinforcement_mix_synthetic:
+            syn_texts = batch[4].to(device=device, non_blocking=True)
+            texts = torch.cat([texts, syn_texts[:, :texts.shape[-1]]], dim=0)
 
         data_time_m.update(time.time() - end)
         optimizer.zero_grad()
@@ -104,6 +107,18 @@ def train_one_epoch(model, data, loss, epoch, optimizer, scaler, scheduler, dist
                     with torch.no_grad():
                         dist_model_out = dist_model(images, texts)
                     model_out.update({f'dist_{k}': v for k, v in dist_model_out.items()})
+                if args.dataset_reinforcement:
+                    batch_size = images.shape[0]
+                    model_out.update({
+                        'dist_image_features': batch[2].to(device=device, non_blocking=True),
+                        'dist_text_features': batch[3].to(device=device, non_blocking=True),
+                    })
+                    if not args.dataset_reinforcement_mix_synthetic:
+                        model_out.update({
+                            "text_features": model_out["text_features"][:batch_size],
+                            "syn_text_features": model_out["text_features"][batch_size:],
+                            'dist_syn_text_features': batch[5].to(device=device, non_blocking=True)
+                        })
                 losses = loss(**model_out, output_dict=True)
 
                 total_loss = sum(losses.values())