results.py 3.18 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from copy import deepcopy
import logging
from collections import defaultdict
from lvis.lvis import LVIS

import pycocotools.mask as mask_utils


class LVISResults(LVIS):
    def __init__(self, lvis_gt, results, max_dets=300):
        """Constructor for LVIS results.
        Args:
            lvis_gt (LVIS class instance, or str containing path of
            annotation file)
            results (str containing path of result file or a list of dicts)
            max_dets (int):  max number of detections per image. The official
            value of max_dets for LVIS is 300.
        """
        if isinstance(lvis_gt, LVIS):
            self.dataset = deepcopy(lvis_gt.dataset)
        elif isinstance(lvis_gt, str):
            self.dataset = self._load_json(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        self.logger = logging.getLogger(__name__)
        self.logger.info("Loading and preparing results.")

        if isinstance(results, str):
            result_anns = self._load_json(results)
        else:
            # this path way is provided to avoid saving and loading result
            # during training.
            self.logger.warn("Assuming user provided the results in correct format.")
            result_anns = results

        assert isinstance(result_anns, list), "results is not a list."

        if max_dets >= 0:
            result_anns = self.limit_dets_per_image(result_anns, max_dets)

        if "bbox" in result_anns[0]:
            for id, ann in enumerate(result_anns):
                x1, y1, w, h = ann["bbox"]
                x2 = x1 + w
                y2 = y1 + h

                if "segmentation" not in ann:
                    ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]

                ann["area"] = w * h
                ann["id"] = id + 1

        elif "segmentation" in result_anns[0]:
            for id, ann in enumerate(result_anns):
                # Only support compressed RLE format as segmentation results
                ann["area"] = mask_utils.area(ann["segmentation"])

                if "bbox" not in ann:
                    ann["bbox"] = mask_utils.toBbox(ann["segmentation"])

                ann["id"] = id + 1

        self.dataset["annotations"] = result_anns
        self._create_index()

        img_ids_in_result = [ann["image_id"] for ann in result_anns]

        assert set(img_ids_in_result) == (
            set(img_ids_in_result) & set(self.get_img_ids())
        ), "Results do not correspond to current LVIS set."

    def limit_dets_per_image(self, anns, max_dets):
        img_ann = defaultdict(list)
        for ann in anns:
            img_ann[ann["image_id"]].append(ann)

        for img_id, _anns in img_ann.items():
            if len(_anns) <= max_dets:
                continue
            _anns = sorted(_anns, key=lambda ann: ann["score"], reverse=True)
            img_ann[img_id] = _anns[:max_dets]

        return [ann for anns in img_ann.values() for ann in anns]

    def get_top_results(self, img_id, score_thrs):
        ann_ids = self.get_ann_ids(img_ids=[img_id])
        anns = self.load_anns(ann_ids)
        return list(filter(lambda ann: ann["score"] > score_thrs, anns))