"vscode:/vscode.git/clone" did not exist on "360772808791084ed180913cff86fbc1a3fa5ac9"
eval.py 19.8 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import datetime
import logging
from collections import OrderedDict
from collections import defaultdict

import numpy as np

from lvis.lvis import LVIS
from lvis.results import LVISResults

import pycocotools.mask as mask_utils


class LVISEval:
    def __init__(self, lvis_gt, lvis_dt, iou_type="segm"):
        """Constructor for LVISEval.
        Args:
            lvis_gt (LVIS class instance, or str containing path of annotation file)
            lvis_dt (LVISResult class instance, or str containing path of result file,
            or list of dict)
            iou_type (str): segm or bbox evaluation
        """
        self.logger = logging.getLogger(__name__)

        if iou_type not in ["bbox", "segm"]:
            raise ValueError("iou_type: {} is not supported.".format(iou_type))

        if isinstance(lvis_gt, LVIS):
            self.lvis_gt = lvis_gt
        elif isinstance(lvis_gt, str):
            self.lvis_gt = LVIS(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        if isinstance(lvis_dt, LVISResults):
            self.lvis_dt = lvis_dt
        elif isinstance(lvis_dt, (str, list)):
            self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
        else:
            raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))

        # per-image per-category evaluation results
        self.eval_imgs = defaultdict(list)
        self.eval = {}  # accumulated evaluation results
        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        self.params = Params(iou_type=iou_type)  # parameters
        self.results = OrderedDict()
        self.ious = {}  # ious between all gts and dts

        self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
        self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())

    def _to_mask(self, anns, lvis):
        for ann in anns:
            rle = lvis.ann_to_rle(ann)
            ann["segmentation"] = rle

    def _prepare(self):
        """Prepare self._gts and self._dts for evaluation based on params."""

        cat_ids = self.params.cat_ids if self.params.cat_ids else None

        gts = self.lvis_gt.load_anns(
            self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)
        )
        dts = self.lvis_dt.load_anns(
            self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)
        )
        # convert ground truth to mask if iou_type == 'segm'
        if self.params.iou_type == "segm":
            self._to_mask(gts, self.lvis_gt)
            self._to_mask(dts, self.lvis_dt)

        # set ignore flag
        for gt in gts:
            if "ignore" not in gt:
                gt["ignore"] = 0

        for gt in gts:
            self._gts[gt["image_id"], gt["category_id"]].append(gt)

        # For federated dataset evaluation we will filter out all dt for an
        # image which belong to categories not present in gt and not present in
        # the negative list for an image. In other words detector is not penalized
        # for categories about which we don't have gt information about their
        # presence or absence in an image.
        img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids)
        # per image map of categories not present in image
        img_nl = {d["id"]: d["neg_category_ids"] for d in img_data}
        # per image list of categories present in image
        img_pl = defaultdict(set)
        for ann in gts:
            img_pl[ann["image_id"]].add(ann["category_id"])
        # per image map of categoires which have missing gt. For these
        # categories we don't penalize the detector for false positives.
        self.img_nel = {d["id"]: d["not_exhaustive_category_ids"] for d in img_data}

        for dt in dts:
            img_id, cat_id = dt["image_id"], dt["category_id"]
            if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]:
                continue
            self._dts[img_id, cat_id].append(dt)

        self.freq_groups = self._prepare_freq_group()

    def _prepare_freq_group(self):
        freq_groups = [[] for _ in self.params.img_count_lbl]
        cat_data = self.lvis_gt.load_cats(self.params.cat_ids)
        for idx, _cat_data in enumerate(cat_data):
            frequency = _cat_data["frequency"]
            freq_groups[self.params.img_count_lbl.index(frequency)].append(idx)
        return freq_groups

    def evaluate(self):
        """
        Run per image evaluation on given images and store results
        (a list of dict) in self.eval_imgs.
        """
        self.logger.info("Running per image evaluation.")
        self.logger.info("Evaluate annotation type *{}*".format(self.params.iou_type))

        self.params.img_ids = list(np.unique(self.params.img_ids))

        if self.params.use_cats:
            cat_ids = self.params.cat_ids
        else:
            cat_ids = [-1]

        self._prepare()

        self.ious = {
            (img_id, cat_id): self.compute_iou(img_id, cat_id)
            for img_id in self.params.img_ids
            for cat_id in cat_ids
        }

        # loop through images, area range, max detection number
        self.eval_imgs = [
            self.evaluate_img(img_id, cat_id, area_rng)
            for cat_id in cat_ids
            for area_rng in self.params.area_rng
            for img_id in self.params.img_ids
        ]

    def _get_gt_dt(self, img_id, cat_id):
        """Create gt, dt which are list of anns/dets. If use_cats is true
        only anns/dets corresponding to tuple (img_id, cat_id) will be
        used. Else, all anns/dets in image are used and cat_id is not used.
        """
        if self.params.use_cats:
            gt = self._gts[img_id, cat_id]
            dt = self._dts[img_id, cat_id]
        else:
            gt = [
                _ann
                for _cat_id in self.params.cat_ids
                for _ann in self._gts[img_id, _cat_id]
            ]
            dt = [
                _ann
                for _cat_id in self.params.cat_ids
                for _ann in self._dts[img_id, _cat_id]
            ]
        return gt, dt

    def compute_iou(self, img_id, cat_id):
        gt, dt = self._get_gt_dt(img_id, cat_id)

        if len(gt) == 0 and len(dt) == 0:
            return []

        # Sort detections in decreasing order of score.
        idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in idx]

        iscrowd = [int(False)] * len(gt)

        if self.params.iou_type == "segm":
            ann_type = "segmentation"
        elif self.params.iou_type == "bbox":
            ann_type = "bbox"
        else:
            raise ValueError("Unknown iou_type for iou computation.")
        gt = [g[ann_type] for g in gt]
        dt = [d[ann_type] for d in dt]

        # compute iou between each dt and gt region
        # will return array of shape len(dt), len(gt)
        ious = mask_utils.iou(dt, gt, iscrowd)
        return ious

    def evaluate_img(self, img_id, cat_id, area_rng):
        """Perform evaluation for single category and image."""
        gt, dt = self._get_gt_dt(img_id, cat_id)

        if len(gt) == 0 and len(dt) == 0:
            return None

        # Add another filed _ignore to only consider anns based on area range.
        for g in gt:
            if g["ignore"] or (g["area"] < area_rng[0] or g["area"] > area_rng[1]):
                g["_ignore"] = 1
            else:
                g["_ignore"] = 0

        # Sort gt ignore last
        gt_idx = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
        gt = [gt[i] for i in gt_idx]

        # Sort dt highest score first
        dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in dt_idx]

        # load computed ious
        ious = (
            self.ious[img_id, cat_id][:, gt_idx]
            if len(self.ious[img_id, cat_id]) > 0
            else self.ious[img_id, cat_id]
        )

        num_thrs = len(self.params.iou_thrs)
        num_gt = len(gt)
        num_dt = len(dt)

        # Array to store the "id" of the matched dt/gt
        gt_m = np.zeros((num_thrs, num_gt))
        dt_m = np.zeros((num_thrs, num_dt))

        gt_ig = np.array([g["_ignore"] for g in gt])
        dt_ig = np.zeros((num_thrs, num_dt))

        for iou_thr_idx, iou_thr in enumerate(self.params.iou_thrs):
            if len(ious) == 0:
                break

            for dt_idx, _dt in enumerate(dt):
                iou = min([iou_thr, 1 - 1e-10])
                # information about best match so far (m=-1 -> unmatched)
                # store the gt_idx which matched for _dt
                m = -1
                for gt_idx, _ in enumerate(gt):
                    # if this gt already matched continue
                    if gt_m[iou_thr_idx, gt_idx] > 0:
                        continue
                    # if _dt matched to reg gt, and on ignore gt, stop
                    if m > -1 and gt_ig[m] == 0 and gt_ig[gt_idx] == 1:
                        break
                    # continue to next gt unless better match made
                    if ious[dt_idx, gt_idx] < iou:
                        continue
                    # if match successful and best so far, store appropriately
                    iou = ious[dt_idx, gt_idx]
                    m = gt_idx

                # No match found for _dt, go to next _dt
                if m == -1:
                    continue

                # if gt to ignore for some reason update dt_ig.
                # Should not be used in evaluation.
                dt_ig[iou_thr_idx, dt_idx] = gt_ig[m]
                # _dt match found, update gt_m, and dt_m with "id"
                dt_m[iou_thr_idx, dt_idx] = gt[m]["id"]
                gt_m[iou_thr_idx, m] = _dt["id"]

        # For LVIS we will ignore any unmatched detection if that category was
        # not exhaustively annotated in gt.
        dt_ig_mask = [
            d["area"] < area_rng[0]
            or d["area"] > area_rng[1]
            or d["category_id"] in self.img_nel[d["image_id"]]
            for d in dt
        ]
        dt_ig_mask = np.array(dt_ig_mask).reshape((1, num_dt))  # 1 X num_dt
        dt_ig_mask = np.repeat(dt_ig_mask, num_thrs, 0)  # num_thrs X num_dt
        # Based on dt_ig_mask ignore any unmatched detection by updating dt_ig
        dt_ig = np.logical_or(dt_ig, np.logical_and(dt_m == 0, dt_ig_mask))
        # store results for given image and category
        return {
            "image_id": img_id,
            "category_id": cat_id,
            "area_rng": area_rng,
            "dt_ids": [d["id"] for d in dt],
            "gt_ids": [g["id"] for g in gt],
            "dt_matches": dt_m,
            "gt_matches": gt_m,
            "dt_scores": [d["score"] for d in dt],
            "gt_ignore": gt_ig,
            "dt_ignore": dt_ig,
        }

    def accumulate(self):
        """Accumulate per image evaluation results and store the result in
        self.eval.
        """
        self.logger.info("Accumulating evaluation results.")

        if not self.eval_imgs:
            self.logger.warn("Please run evaluate first.")

        if self.params.use_cats:
            cat_ids = self.params.cat_ids
        else:
            cat_ids = [-1]

        num_thrs = len(self.params.iou_thrs)
        num_recalls = len(self.params.rec_thrs)
        num_cats = len(cat_ids)
        num_area_rngs = len(self.params.area_rng)
        num_imgs = len(self.params.img_ids)

        # -1 for absent categories
        precision = -np.ones(
            (num_thrs, num_recalls, num_cats, num_area_rngs)
        )
        recall = -np.ones((num_thrs, num_cats, num_area_rngs))

        # Initialize dt_pointers
        dt_pointers = {}
        for cat_idx in range(num_cats):
            dt_pointers[cat_idx] = {}
            for area_idx in range(num_area_rngs):
                dt_pointers[cat_idx][area_idx] = {}

        # Per category evaluation
        for cat_idx in range(num_cats):
            Nk = cat_idx * num_area_rngs * num_imgs
            for area_idx in range(num_area_rngs):
                Na = area_idx * num_imgs
                E = [
                    self.eval_imgs[Nk + Na + img_idx]
                    for img_idx in range(num_imgs)
                ]
                # Remove elements which are None
                E = [e for e in E if not e is None]
                if len(E) == 0:
                    continue

                # Append all scores: shape (N,)
                dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0)
                dt_ids = np.concatenate([e["dt_ids"] for e in E], axis=0)

                dt_idx = np.argsort(-dt_scores, kind="mergesort")
                dt_scores = dt_scores[dt_idx]
                dt_ids = dt_ids[dt_idx]

                dt_m = np.concatenate([e["dt_matches"] for e in E], axis=1)[:, dt_idx]
                dt_ig = np.concatenate([e["dt_ignore"] for e in E], axis=1)[:, dt_idx]

                gt_ig = np.concatenate([e["gt_ignore"] for e in E])
                # num gt anns to consider
                num_gt = np.count_nonzero(gt_ig == 0)

                if num_gt == 0:
                    continue

                tps = np.logical_and(dt_m, np.logical_not(dt_ig))
                fps = np.logical_and(np.logical_not(dt_m), np.logical_not(dt_ig))

                tp_sum = np.cumsum(tps, axis=1).astype(dtype=float)
                fp_sum = np.cumsum(fps, axis=1).astype(dtype=float)

                dt_pointers[cat_idx][area_idx] = {
                    "dt_ids": dt_ids,
                    "tps": tps,
                    "fps": fps,
                }

                for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
                    tp = np.array(tp)
                    fp = np.array(fp)
                    num_tp = len(tp)
                    rc = tp / num_gt
                    if num_tp:
                        recall[iou_thr_idx, cat_idx, area_idx] = rc[
                            -1
                        ]
                    else:
                        recall[iou_thr_idx, cat_idx, area_idx] = 0

                    # np.spacing(1) ~= eps
                    pr = tp / (fp + tp + np.spacing(1))
                    pr = pr.tolist()

                    # Replace each precision value with the maximum precision
                    # value to the right of that recall level. This ensures
                    # that the  calculated AP value will be less suspectable
                    # to small variations in the ranking.
                    for i in range(num_tp - 1, 0, -1):
                        if pr[i] > pr[i - 1]:
                            pr[i - 1] = pr[i]

                    rec_thrs_insert_idx = np.searchsorted(
                        rc, self.params.rec_thrs, side="left"
                    )

                    pr_at_recall = [0.0] * num_recalls

                    try:
                        for _idx, pr_idx in enumerate(rec_thrs_insert_idx):
                            pr_at_recall[_idx] = pr[pr_idx]
                    except:
                        pass
                    precision[iou_thr_idx, :, cat_idx, area_idx] = np.array(pr_at_recall)

        self.eval = {
            "params": self.params,
            "counts": [num_thrs, num_recalls, num_cats, num_area_rngs],
            "date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "precision": precision,
            "recall": recall,
            "dt_pointers": dt_pointers,
        }

    def _summarize(
        self, summary_type, iou_thr=None, area_rng="all", freq_group_idx=None
    ):
        aidx = [
            idx
            for idx, _area_rng in enumerate(self.params.area_rng_lbl)
            if _area_rng == area_rng
        ]

        if summary_type == 'ap':
            s = self.eval["precision"]
            if iou_thr is not None:
                tidx = np.where(iou_thr == self.params.iou_thrs)[0]
                s = s[tidx]
            if freq_group_idx is not None:
                s = s[:, :, self.freq_groups[freq_group_idx], aidx]
            else:
                s = s[:, :, :, aidx]
        else:
            s = self.eval["recall"]
            if iou_thr is not None:
                tidx = np.where(iou_thr == self.params.iou_thrs)[0]
                s = s[tidx]
            s = s[:, :, aidx]

        if len(s[s > -1]) == 0:
            mean_s = -1
        else:
            mean_s = np.mean(s[s > -1])
        return mean_s

    def summarize(self):
        """Compute and display summary metrics for evaluation results."""
        if not self.eval:
            raise RuntimeError("Please run accumulate() first.")

        max_dets = self.params.max_dets

        self.results["AP"]   = self._summarize('ap')
        self.results["AP50"] = self._summarize('ap', iou_thr=0.50)
        self.results["AP75"] = self._summarize('ap', iou_thr=0.75)
        self.results["APs"]  = self._summarize('ap', area_rng="small")
        self.results["APm"]  = self._summarize('ap', area_rng="medium")
        self.results["APl"]  = self._summarize('ap', area_rng="large")
        self.results["APr"]  = self._summarize('ap', freq_group_idx=0)
        self.results["APc"]  = self._summarize('ap', freq_group_idx=1)
        self.results["APf"]  = self._summarize('ap', freq_group_idx=2)

        key = "AR@{}".format(max_dets)
        self.results[key] = self._summarize('ar')

        for area_rng in ["small", "medium", "large"]:
            key = "AR{}@{}".format(area_rng[0], max_dets)
            self.results[key] = self._summarize('ar', area_rng=area_rng)

    def run(self):
        """Wrapper function which calculates the results."""
        self.evaluate()
        self.accumulate()
        self.summarize()

    def print_results(self):
        template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"

        for key, value in self.results.items():
            max_dets = self.params.max_dets
            if "AP" in key:
                title = "Average Precision"
                _type = "(AP)"
            else:
                title = "Average Recall"
                _type = "(AR)"

            if len(key) > 2 and key[2].isdigit():
                iou_thr = (float(key[2:]) / 100)
                iou = "{:0.2f}".format(iou_thr)
            else:
                iou = "{:0.2f}:{:0.2f}".format(
                    self.params.iou_thrs[0], self.params.iou_thrs[-1]
                )

            if len(key) > 2 and key[2] in ["r", "c", "f"]:
                cat_group_name = key[2]
            else:
                cat_group_name = "all"

            if len(key) > 2 and key[2] in ["s", "m", "l"]:
                area_rng = key[2]
            else:
                area_rng = "all"

            print(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))

    def get_results(self):
        if not self.results:
            self.logger.warn("results is empty. Call run().")
        return self.results


class Params:
    def __init__(self, iou_type):
        """Params for LVIS evaluation API."""
        self.img_ids = []
        self.cat_ids = []
        # np.arange causes trouble.  the data point on arange is slightly
        # larger than the true value
        self.iou_thrs = np.linspace(
            0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True
        )
        self.rec_thrs = np.linspace(
            0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True
        )
        self.max_dets = 300
        self.area_rng = [
            [0 ** 2, 1e5 ** 2],
            [0 ** 2, 32 ** 2],
            [32 ** 2, 96 ** 2],
            [96 ** 2, 1e5 ** 2],
        ]
        self.area_rng_lbl = ["all", "small", "medium", "large"]
        self.use_cats = 1
        # We bin categories in three bins based how many images of the training
        # set the category is present in.
        # r: Rare    :  < 10
        # c: Common  : >= 10 and < 100
        # f: Frequent: >= 100
        self.img_count_lbl = ["r", "c", "f"]
        self.iou_type = iou_type