model.py 20.9 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
from collections import OrderedDict
from typing import Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn


class Bottleneck(nn.Module):
    """Implements a residual bottleneck block with downsampling and expansion for deep neural networks."""

    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        """Initializes the Bottleneck module with given input planes, output planes, and stride."""
        super().__init__()

        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu2 = nn.ReLU(inplace=True)

        self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

        self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu3 = nn.ReLU(inplace=True)

        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = nn.Sequential(
                OrderedDict(
                    [
                        ("-1", nn.AvgPool2d(stride)),
                        ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
                        ("1", nn.BatchNorm2d(planes * self.expansion)),
                    ]
                )
            )

    def forward(self, x: torch.Tensor):
        """Process input tensor `x` through the defined network layers and return the output tensor."""
        identity = x

        out = self.relu1(self.bn1(self.conv1(x)))
        out = self.relu2(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu3(out)
        return out


class AttentionPool2d(nn.Module):
    """Applies multi-head attention pooling over 2D spatial data, transforming it into a fixed-size output embedding."""

    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        """Initializes AttentionPool2d with spatial dimension, embedding dimension, number of heads, and optional output
        dimension.
        """
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        """Executes the forward pass of the model using multi-head attention on input tensor 'x', returning the
        processed data.
        """
        x = x.flatten(start_dim=2).permute(2, 0, 1)  # NCHW -> (HW)NC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x[:1],
            key=x,
            value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False,
        )
        return x.squeeze(0)


class ModifiedResNet(nn.Module):
    """
    A ResNet class that is similar to torchvision's but contains the following changes:

    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    """

    def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
        """Initialize model with customizable layers, output dimensions, attention heads, input resolution, and width
        parameters.
        """
        super().__init__()
        self.output_dim = output_dim
        self.input_resolution = input_resolution

        # the 3-layer stem
        self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(width // 2)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(width // 2)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(width)
        self.relu3 = nn.ReLU(inplace=True)
        self.avgpool = nn.AvgPool2d(2)

        # residual layers
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1 = self._make_layer(width, layers[0])
        self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
        self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

        embed_dim = width * 32  # the ResNet feature dimension
        self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)

    def _make_layer(self, planes, blocks, stride=1):
        """Constructs a sequential layer of Bottleneck blocks with the given planes, number of blocks, and stride."""
        layers = [Bottleneck(self._inplanes, planes, stride)]

        self._inplanes = planes * Bottleneck.expansion
        layers.extend(Bottleneck(self._inplanes, planes) for _ in range(1, blocks))
        return nn.Sequential(*layers)

    def forward(self, x):
        """Forward pass through the network stem, applying convolutions, batch normalization, ReLU activations, and
        average pooling.
        """

        def stem(x):
            """Forward pass through the network stem, applying convolutions, batch normalization, ReLU activations, and
            average pooling.
            """
            x = self.relu1(self.bn1(self.conv1(x)))
            x = self.relu2(self.bn2(self.conv2(x)))
            x = self.relu3(self.bn3(self.conv3(x)))
            x = self.avgpool(x)
            return x

        x = x.type(self.conv1.weight.dtype)
        x = stem(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.attnpool(x)

        return x


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        """Performs forward pass through the LayerNorm, converting input to float32 and back to its original type."""
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    """Applies the QuickGELU activation function, a faster approximation of GELU, to an input tensor."""

    def forward(self, x: torch.Tensor):
        """Applies the QuickGELU activation function to an input tensor."""
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    """Implements a residual attention block with multi-head attention and MLP layers for transformer models."""

    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        """Initializes the ResidualAttentionBlock with model dimension, number of heads, and optional attention mask."""
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    ("c_fc", nn.Linear(d_model, d_model * 4)),
                    ("gelu", QuickGELU()),
                    ("c_proj", nn.Linear(d_model * 4, d_model)),
                ]
            )
        )
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        """Compute scaled dot-product attention using query, key, and value tensors, with optional attention mask
        adjustment.
        """
        attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device)[:x.shape[0], :x.shape[0]] if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]

    def forward(self, x: torch.Tensor):
        """Performs forward pass through the network, applying attention and MLP layers sequentially."""
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    """Processes input tensors through multiple residual attention blocks for sequence modeling tasks."""

    def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
        """Initializes the Transformer model with specified width, layers, heads, and optional attention mask."""
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])

    def forward(self, x: torch.Tensor):
        """Process the input tensor 'x' through a sequence of residual attention blocks."""
        return self.resblocks(x)


class VisionTransformer(nn.Module):
    """Vision Transformer model for image classification using patch embeddings and multi-head self-attention."""

    def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
        """Initialize a VisionTransformer with given input resolution, patch size, width, layers, heads, and output
        dimension.
        """
        super().__init__()
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)

        scale = width**-0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads)

        self.ln_post = LayerNorm(width)
        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

    def forward(self, x: torch.Tensor):
        """Processes input tensor through embedding, layer normalization, and transformer layers."""
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
        x = torch.cat(
            [
                self.class_embedding.to(x.dtype)
                + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
                x,
            ],
            dim=1,
        )  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_post(x[:, 0, :])

        if self.proj is not None:
            x = x @ self.proj

        return x


class CLIP(nn.Module):
    """Multi-modal model combining vision and text encoders for joint embeddings based on arxiv.org/abs/2103.00020."""

    def __init__(
        self,
        embed_dim: int,
        # vision
        image_resolution: int,
        vision_layers: Union[Tuple[int, int, int, int], int],
        vision_width: int,
        vision_patch_size: int,
        # text
        context_length: int,
        vocab_size: int,
        transformer_width: int,
        transformer_heads: int,
        transformer_layers: int,
    ):
        """Initializes CLIP model with vision and text components for multi-modal embedding with specified dimensions
        and layers.
        """
        super().__init__()

        self.context_length = context_length

        if isinstance(vision_layers, (tuple, list)):
            vision_heads = vision_width * 32 // 64
            self.visual = ModifiedResNet(
                layers=vision_layers,
                output_dim=embed_dim,
                heads=vision_heads,
                input_resolution=image_resolution,
                width=vision_width,
            )
        else:
            vision_heads = vision_width // 64
            self.visual = VisionTransformer(
                input_resolution=image_resolution,
                patch_size=vision_patch_size,
                width=vision_width,
                layers=vision_layers,
                heads=vision_heads,
                output_dim=embed_dim,
            )

        self.transformer = Transformer(
            width=transformer_width,
            layers=transformer_layers,
            heads=transformer_heads,
            attn_mask=self.build_attention_mask(),
        )

        self.vocab_size = vocab_size
        self.token_embedding = nn.Embedding(vocab_size, transformer_width)
        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
        self.ln_final = LayerNorm(transformer_width)

        self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.initialize_parameters()

    def initialize_parameters(self):
        """Initialize the parameters of the token and positional embeddings with normal distributions."""
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)

        if isinstance(self.visual, ModifiedResNet):
            if self.visual.attnpool is not None:
                std = self.visual.attnpool.c_proj.in_features**-0.5
                nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)

            for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
                for name, param in resnet_block.named_parameters():
                    if name.endswith("bn3.weight"):
                        nn.init.zeros_(param)

        proj_std = (self.transformer.width**-0.5) * ((2 * self.transformer.layers) ** -0.5)
        attn_std = self.transformer.width**-0.5
        fc_std = (2 * self.transformer.width) ** -0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5)

    def build_attention_mask(self):
        """Create a causal attention mask with full attention between vision tokens, using an additive attention mask
        filled with -inf.
        """
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    @property
    def dtype(self):
        """Return the data type of the weights of the first convolutional layer in the visual model."""
        return self.visual.conv1.weight.dtype

    def encode_image(self, image):
        """Encodes an input image using the visual model and returns the encoded representation."""
        return self.visual(image.type(self.dtype))

    def encode_text(self, text):
        """Encodes input text using the token embedding and converts it to the specified data type."""
        x = self.token_embedding(text).type(self.dtype)  # [batch_size, n_ctx, d_model]
        
        x = x + self.positional_embedding.type(self.dtype)[:x.shape[1]]
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x).type(self.dtype)

        # x.shape = [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection

        return x

    def forward(self, image, text):
        """Processes input image and text data through encoder modules and returns the respective features."""
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t()

        # shape = [global_batch_size, global_batch_size]
        return logits_per_image, logits_per_text


def convert_weights(model: nn.Module):
    """Convert applicable model parameters to fp16."""

    def _convert_weights_to_fp16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.half()
            if l.bias is not None:
                l.bias.data = l.bias.data.half()

        if isinstance(l, nn.MultiheadAttention):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.half()

        for name in ["text_projection", "proj"]:
            if hasattr(l, name):
                attr = getattr(l, name)
                if attr is not None:
                    attr.data = attr.data.half()

    model.apply(_convert_weights_to_fp16)


def build_model(state_dict: dict):
    """Builds and returns a CLIP model from the provided state dictionary."""
    vit = "visual.proj" in state_dict

    if vit:
        vision_width = state_dict["visual.conv1.weight"].shape[0]
        vision_layers = len([k for k in state_dict if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
        vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
        grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
        image_resolution = vision_patch_size * grid_size
    else:
        counts: list = [
            len({k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}")}) for b in [1, 2, 3, 4]
        ]
        vision_layers = tuple(counts)
        vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
        output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
        vision_patch_size = None
        assert output_width**2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
        image_resolution = output_width * 32

    embed_dim = state_dict["text_projection"].shape[1]
    context_length = state_dict["positional_embedding"].shape[0]
    vocab_size = state_dict["token_embedding.weight"].shape[0]
    transformer_width = state_dict["ln_final.weight"].shape[0]
    transformer_heads = transformer_width // 64
    transformer_layers = len({k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")})

    model = CLIP(
        embed_dim,
        image_resolution,
        vision_layers,
        vision_width,
        vision_patch_size,
        context_length,
        vocab_size,
        transformer_width,
        transformer_heads,
        transformer_layers,
    )

    for key in ["input_resolution", "context_length", "vocab_size"]:
        if key in state_dict:
            del state_dict[key]

    convert_weights(model)
    model.load_state_dict(state_dict)
    return model.eval()