predict_visual_prompt.py 1.32 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from ultralytics import YOLOE
import numpy as np
from ultralytics.models.yolo.yoloe.predict_vp import YOLOEVPSegPredictor

model = YOLOE("pretrain/yoloe-v8l-seg.pt")

# Handcrafted shape can also be passed, please refer to app.py
# Multiple boxes or handcrafted shapes can also be passed as visual prompt in an image
visuals = dict(
    bboxes=[
        np.array(
            [
                [221.52, 405.8, 344.98, 857.54],  # For person
                [120, 425, 160, 445],  # For glasses
            ],
        ), 
        np.array([
            [150, 200, 1150, 700]
        ])
    ]
    ,
    cls=[
        np.array(
            [
                0,  # For person
                1,  # For glasses
            ]
        ), 
        np.array([0])
    ]
)

source_image = 'ultralytics/assets/bus.jpg'
target_image = 'ultralytics/assets/zidane.jpg'

model.predict([source_image, target_image], save=True, prompts=visuals, predictor=YOLOEVPSegPredictor)

# Prompts in different images can be passed
# Please set a smaller conf for cross-image prompts
# model.predictor = None  # remove VPPredictor
model.predict(source_image, prompts=visuals, predictor=YOLOEVPSegPredictor,
              return_vpe=True)
model.set_classes(["object0", "object1"], model.predictor.vpe)
model.predictor = None  # remove VPPredictor
model.predict(target_image, save=True)