predict_text_prompt.py 2.35 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import os
from PIL import Image
import supervision as sv
from ultralytics import YOLOE


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--source",
        type=str,
        required=True,
        help="Path to the input image"
    )
    parser.add_argument(
        "--checkpoint",
        type=str,
        default="yoloe-v8l-seg.pt",
        help="Path or ID of the model checkpoint"
    )
    parser.add_argument(
        "--names",
        nargs="+",
        default=["person"],
        help="List of class names to set for the model"
    )
    parser.add_argument(
        "--output",
        type=str,
        help="Path to save the annotated image"
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cpu",
        help="Device to run inference on"
    )
    return parser.parse_args()


def main():
    args = parse_args()

    if not args.output:
        base, ext = os.path.splitext(args.source)
        args.output = f"{base}-output{ext}"

    image = Image.open(args.source).convert("RGB")

    model = YOLOE(args.checkpoint)
    model.to(args.device)

    model.set_classes(args.names, model.get_text_pe(args.names))
    results = model.predict(image, verbose=False)

    detections = sv.Detections.from_ultralytics(results[0])

    resolution_wh = image.size
    thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
    text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh)

    labels = [
        f"{class_name} {confidence:.2f}"
        for class_name, confidence in zip(detections["class_name"], detections.confidence)
    ]

    annotated_image = image.copy()
    annotated_image = sv.MaskAnnotator(
        color_lookup=sv.ColorLookup.INDEX,
        opacity=0.4
    ).annotate(scene=annotated_image, detections=detections)
    annotated_image = sv.BoxAnnotator(
        color_lookup=sv.ColorLookup.INDEX,
        thickness=thickness
    ).annotate(scene=annotated_image, detections=detections)
    annotated_image = sv.LabelAnnotator(
        color_lookup=sv.ColorLookup.INDEX,
        text_scale=text_scale,
        smart_position=True
    ).annotate(scene=annotated_image, detections=detections, labels=labels)

    annotated_image.save(args.output)
    print(f"Annotated image saved to: {args.output}")

if __name__ == "__main__":
    main()