Unverified Commit 7cdef1da authored by MPU王荣胜's avatar MPU王荣胜 Committed by GitHub
Browse files

add model

parent caaeea86
from .chat import chat
from .infer_util import *
from .blip2 import BlipImageEvalProcessor
import torch
import torch.nn as nn
from sat.model import ViTModel, BaseModel
from sat.model import BaseMixin
from sat import AutoModel
from copy import deepcopy
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
class LNFinalyMixin(BaseMixin):
def __init__(self, hidden_size):
super().__init__()
self.ln_vision = nn.LayerNorm(hidden_size)
def final_forward(self, logits, **kw_args):
return self.ln_vision(logits)
class EVAViT(ViTModel):
def __init__(self, args, transformer=None, parallel_output=True, **kwargs):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, **kwargs)
self.del_mixin("cls")
self.add_mixin("cls", LNFinalyMixin(args.hidden_size))
def forward(self, image):
batch_size = image.size(0)
input_ids = torch.zeros(batch_size, 1, dtype=torch.long, device=image.device)
attention_mask = torch.tensor([[1.]], dtype=image.dtype, device=image.device)
return super().forward(input_ids=input_ids, position_ids=None, attention_mask=attention_mask, image=image)
class QFormer(BaseModel):
def __init__(self, args, transformer=None, parallel_output=True, **kwargs):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, activation_func=nn.functional.gelu, **kwargs)
self.transformer.position_embeddings = None
def final_forward(self, logits, **kw_args):
return logits
def position_embedding_forward(self, position_ids, **kw_args):
return None
def forward(self, encoder_outputs):
batch_size = encoder_outputs.size(0)
input_ids = torch.arange(32, dtype=torch.long, device=encoder_outputs.device).unsqueeze(0).expand(batch_size, -1)
attention_mask = torch.tensor([[1.]], dtype=encoder_outputs.dtype, device=encoder_outputs.device)
cross_attention_mask = torch.tensor([[1.]], dtype=encoder_outputs.dtype, device=encoder_outputs.device)
return super().forward(input_ids=input_ids, position_ids=None, attention_mask=attention_mask, encoder_outputs=encoder_outputs, cross_attention_mask=cross_attention_mask)
class BLIP2(torch.nn.Module):
def __init__(self, eva_args, qformer_args, vit=None, qformer=None, **kwargs):
super().__init__()
if vit is not None:
self.vit = vit
else:
self.vit = EVAViT(EVAViT.get_args(**eva_args))
if qformer is not None:
self.qformer = qformer
else:
self.qformer = QFormer(QFormer.get_args(**qformer_args))
self.glm_proj = nn.Linear(768, 4096).to(self.qformer.parameters().__next__().device).to(self.qformer.parameters().__next__().dtype)
def forward(self, image, **kwargs):
enc = self.vit(image)[0]
out = self.qformer(enc)[0]
return self.glm_proj(out)
class BlipImageBaseProcessor():
def __init__(self, mean=None, std=None):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean, std)
class BlipImageEvalProcessor(BlipImageBaseProcessor):
def __init__(self, image_size=384, mean=None, std=None):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.Resize(
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
# -*- encoding: utf-8 -*-
'''
@File : chat.py
@Time : 2023/05/08 19:10:08
@Author : Ming Ding
@Contact : dm18@mails.tsinghua.edu.cn
'''
import os
import sys
import re
from functools import partial
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
import requests
from PIL import Image
from io import BytesIO
import torch
from sat.generation.autoregressive_sampling import filling_sequence, BaseStrategy
from .blip2 import BlipImageEvalProcessor
def get_masks_and_position_ids_glm(seq, mask_position, context_length):
'''GLM model, different from GPT.
Args:
seq: torch.IntTensor, [seq_len]
mask_position: int, the position of the masked place.
context_length: int, the length of context.
Returns:
tokens: torch.IntTensor, [1, seq_len]
attention_mask: torch.FloatTensor, [1, seq_len, seq_len]
position_ids: torch.IntTensor, [2, seq_len]
'''
tokens = seq.unsqueeze(0)
attention_mask = torch.ones((1, len(seq), len(seq)), device=tokens.device)
attention_mask.tril_()
attention_mask[..., :context_length] = 1
attention_mask.unsqueeze_(1)
# 2D position ids
position_ids = torch.zeros(2, len(seq), device=tokens.device, dtype=torch.long)
torch.arange(0, context_length, out=position_ids[0, :context_length])
position_ids[0, context_length:] = mask_position
torch.arange(1, len(seq) - context_length + 1, out=position_ids[1, context_length:])
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def process_response(response):
response = response.strip()
response = response.replace("[[训练时间]]", "2023年")
punkts = [
[",", ","],
["!", "!"],
[":", ":"],
[";", ";"],
["\?", "?"],
]
for item in punkts:
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
return response
def process_image(text, image=None):
'''Process image in text.
Args:
text: str, text.
image: Optional, image path / url / PIL image.
'''
image_position = text.rfind("<img>") + 5
# extract path from <img></img> using re
image_path = re.findall(r"<img>(.*?)</img>", text)
image_path = image_path[-1] if image_path[-1] else None
if image_path is not None:
assert image is None, "image and image_path cannot be both not None."
text = text.replace(image_path, "")
image_path = image_path.strip()
# url
if image_path.startswith("http"):
response = requests.get(image_path, timeout=10)
image = Image.open(BytesIO(response.content))
# local path
else:
image = Image.open(image_path)
if image is not None and isinstance(image, Image.Image):
processor = BlipImageEvalProcessor(224)
image = processor(image.convert('RGB'))
image = image.unsqueeze(0)
return text, image_position, image
def chat(image_path, model, tokenizer,
query: str, history: List[Tuple[str, str]] = None, image: Image = None,
max_length: int = 1024, top_p=0.7, top_k=30, temperature=0.95, repetition_penalty=1.2,
invalid_slices=[], english=False
):
if not history:
history = []
if image_path:
prompt = "<img>{}</img>".format(image_path if image_path else "")
else:
prompt = "<img></img>"
if english:
for i, (old_query, response) in enumerate(history):
prompt += "Q:{}\nA:{}\n".format(old_query, response)
prompt += "Q:{}\nA:".format(query)
else:
for i, (old_query, response) in enumerate(history):
prompt += "问:{}\n答:{}\n".format(old_query, response)
prompt += "问:{}\n答:".format(query)
# ---------------
# tokenizer, this is an example of huggingface tokenizer.
# input str, output['input_ids'] = tensor([[tokenized str, gmask, sop]])
prompt, image_position, torch_image = process_image(prompt, image=image)
if torch_image is not None:
torch_image = torch_image.to(next(model.parameters()).dtype).to(next(model.parameters()).device)
if image_position < 5: # no image
inputs = tokenizer([prompt], return_tensors="pt").to(model.parameters().__next__().device)['input_ids'][0]
pre_image = 0
else:
input0 = tokenizer.encode(prompt[:image_position], add_special_tokens=False)
input1 = [tokenizer.pad_token_id] * model.image_length
input2 = tokenizer.encode(prompt[image_position:], add_special_tokens=False)
inputs = sum([input0, input1, input2], [])
inputs = torch.tensor(tokenizer.build_inputs_with_special_tokens(inputs)).to(model.parameters().__next__().device)
pre_image = len(input0)
# ---------------
# Next, we manually set the format to keep flexibility.
mask_position = len(inputs) - 2
context_length = len(inputs) - 1 # all before sop
get_func = partial(get_masks_and_position_ids_glm, mask_position=mask_position, context_length=context_length)
seq = torch.cat(
[inputs, torch.tensor([-1]*(max_length-len(inputs)), device=inputs.device)], dim=0
)
# ---------------
# from sat.generation.sampling_strategies import BeamSearchStrategy
# strategy = BeamSearchStrategy(num_beams, length_penalty=1., prefer_min_length=5, end_tokens=[tokenizer.eos_token_id], consider_end=True, no_repeat_ngram_size=5, stop_n_iter_unchanged=30, temperature=temperature, top_p=top_p, top_k=60, repetition_penalty=1.1)
strategy = BaseStrategy(temperature=temperature, top_p=top_p, top_k=top_k, end_tokens=[tokenizer.eos_token_id],
invalid_slices=invalid_slices, repetition_penalty=repetition_penalty)
output = filling_sequence(
model, seq,
batch_size=1,
get_masks_and_position_ids=get_func,
strategy=strategy,
pre_image=pre_image,
image=torch_image,
)[0] # drop memory
# ---------------
# port from inference_glm.py, more general than chat mode
# clip -1s and fill back generated things into seq
if type(output) is not list:
output_list = output.tolist()
else:
output_list = output
for i in range(len(output_list)):
output = output_list[i]
if type(output) is not list:
output = output.tolist()
try:
unfinished = output.index(-1)
except ValueError:
unfinished = len(output)
if output[unfinished - 1] == tokenizer.eos_token_id:
unfinished -= 1
bog = output.index(tokenizer.bos_token_id)
output_list[i] = output[:mask_position] + output[bog + 1:unfinished] + output[mask_position + 1:bog]
# ---------------
response = tokenizer.decode(output_list[0])
sep = 'A:' if english else '答:'
response = process_response(response).split(sep)[-1].strip()
history = history + [(query, response)]
return response, history, torch_image
import os
from PIL import Image
from io import BytesIO
import base64
import re
import argparse
import torch
from transformers import AutoTokenizer
from sat.model.mixins import CachedAutoregressiveMixin
from sat.quantization.kernels import quantize
import hashlib
from .visualglm import VisualGLMModel
def get_infer_setting(gpu_device=0, quant=None):
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_device)
args = argparse.Namespace(
fp16=True,
skip_init=True,
device='cuda' if quant is None else 'cpu',
)
model, args = VisualGLMModel.from_pretrained('visualglm-6b', args)
model.add_mixin('auto-regressive', CachedAutoregressiveMixin())
assert quant in [None, 4, 8]
if quant is not None:
quantize(model.transformer, quant)
model.eval()
model = model.cuda()
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
return model, tokenizer
def is_chinese(text):
zh_pattern = re.compile(u'[\u4e00-\u9fa5]+')
return zh_pattern.search(text)
def generate_input(input_text, input_image_prompt, history=[], input_para=None, image_is_encoded=True):
if not image_is_encoded:
image = input_image_prompt
else:
decoded_image = base64.b64decode(input_image_prompt)
image = Image.open(BytesIO(decoded_image))
input_data = {'input_query': input_text, 'input_image': image, 'history': history, 'gen_kwargs': input_para}
return input_data
def process_image(image_encoded):
decoded_image = base64.b64decode(image_encoded)
image = Image.open(BytesIO(decoded_image))
image_hash = hashlib.sha256(image.tobytes()).hexdigest()
image_path = f'./examples/{image_hash}.png'
if not os.path.isfile(image_path):
image.save(image_path)
return os.path.abspath(image_path)
\ No newline at end of file
import torch
from sat.model.official import ChatGLMModel
from sat.model.base_model import BaseMixin
from copy import deepcopy
import json
from .blip2 import BLIP2
from sat.resources.urls import MODEL_URLS
MODEL_URLS['visualglm-6b'] = 'https://cloud.tsinghua.edu.cn/f/348b98dffcc940b6a09d/?dl=1'
class ImageMixin(BaseMixin):
def __init__(self, args):
super().__init__()
self.args = deepcopy(args)
self.model = BLIP2(args.eva_args, args.qformer_args)
def word_embedding_forward(self, input_ids, output_cross_layer, **kw_args):
if kw_args["pre_image"] > input_ids.shape[1] or kw_args.get("image", None) is None:
return self.transformer.word_embeddings(input_ids)
image_emb = self.model(**kw_args)
# the image is inserted after 问:<img>, override 32 pads
pre_id, pads, post_id = torch.tensor_split(input_ids, [kw_args["pre_image"], kw_args["pre_image"]+self.args.image_length], dim=1)
pre_txt_emb = self.transformer.word_embeddings(pre_id)
post_txt_emb = self.transformer.word_embeddings(post_id)
return torch.cat([pre_txt_emb, image_emb, post_txt_emb], dim=1)
class VisualGLMModel(ChatGLMModel):
def __init__(self, args, transformer=None, **kwargs):
super().__init__(args, transformer=transformer, **kwargs)
self.image_length = args.image_length
self.add_mixin("eva", ImageMixin(args))
@classmethod
def add_model_specific_args(cls, parser):
group = parser.add_argument_group('VisualGLM', 'VisualGLM Configurations')
group.add_argument('--image_length', type=int, default=32)
group.add_argument('--eva_args', type=json.loads, default={})
group.add_argument('--qformer_args', type=json.loads, default={})
return super().add_model_specific_args(parser)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment