xdecoder-tiny_zeroshot_open-vocab-semseg_coco.py 2.86 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
_base_ = '_base_/xdecoder-tiny_open-vocab-semseg.py'

dataset_type = 'CocoSegDataset'
data_root = 'data/coco/'

test_pipeline = [
    dict(
        type='LoadImageFromFile', imdecode_backend='pillow',
        backend_args=None),
    dict(
        type='ResizeShortestEdge', scale=800, max_size=1333, backend='pillow'),
    dict(
        type='LoadAnnotations',
        with_bbox=False,
        with_label=False,
        with_seg=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor',
                   'text'))
]

x_decoder_coco2017_semseg_classes = (
    'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
    'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
    'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
    'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
    'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
    'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
    'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
    'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
    'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
    'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
    'hair drier', 'toothbrush', 'banner', 'blanket', 'bridge', 'cardboard',
    'counter', 'curtain', 'door-stuff', 'floor-wood', 'flower', 'fruit',
    'gravel', 'house', 'light', 'mirror-stuff', 'net', 'pillow', 'platform',
    'playingfield', 'railroad', 'river', 'road', 'roof', 'sand', 'sea',
    'shelf', 'snow', 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone',
    'wall-tile', 'wall-wood', 'water-other', 'window-blind', 'window-other',
    'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
    'cabinet-merged', 'table-merged', 'floor-other-merged', 'pavement-merged',
    'mountain-merged', 'grass-merged', 'dirt-merged', 'paper-merged',
    'food-other-merged', 'building-other-merged', 'rock-merged',
    'wall-other-merged', 'rug-merged')

val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        metainfo=dict(classes=x_decoder_coco2017_semseg_classes),
        use_label_map=False,
        data_prefix=dict(
            img_path='val2017/',
            seg_map_path='annotations/panoptic_semseg_val2017/'),
        pipeline=test_pipeline,
        return_classes=True))

test_dataloader = val_dataloader

val_evaluator = dict(type='SemSegMetric', iou_metrics=['mIoU'])
test_evaluator = val_evaluator