yolox_head.py 26.3 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmcv.ops.nms import batched_nms
from mmengine.config import ConfigDict
from mmengine.model import bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import bbox_xyxy_to_cxcywh
from mmdet.utils import (ConfigType, OptConfigType, OptInstanceList,
                         OptMultiConfig, reduce_mean)
from ..task_modules.prior_generators import MlvlPointGenerator
from ..task_modules.samplers import PseudoSampler
from ..utils import multi_apply
from .base_dense_head import BaseDenseHead


@MODELS.register_module()
class YOLOXHead(BaseDenseHead):
    """YOLOXHead head used in `YOLOX <https://arxiv.org/abs/2107.08430>`_.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels in stacking convs.
            Defaults to 256
        stacked_convs (int): Number of stacking convs of the head.
            Defaults to (8, 16, 32).
        strides (Sequence[int]): Downsample factor of each feature map.
             Defaults to None.
        use_depthwise (bool): Whether to depthwise separable convolution in
            blocks. Defaults to False.
        dcn_on_last_conv (bool): If true, use dcn in the last layer of
            towers. Defaults to False.
        conv_bias (bool or str): If specified as `auto`, it will be decided by
            the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
            None, otherwise False. Defaults to "auto".
        conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
            convolution layer. Defaults to None.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
            layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
            Defaults to None.
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
        loss_obj (:obj:`ConfigDict` or dict): Config of objectness loss.
        loss_l1 (:obj:`ConfigDict` or dict): Config of L1 loss.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
            anchor head. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            anchor head. Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(
        self,
        num_classes: int,
        in_channels: int,
        feat_channels: int = 256,
        stacked_convs: int = 2,
        strides: Sequence[int] = (8, 16, 32),
        use_depthwise: bool = False,
        dcn_on_last_conv: bool = False,
        conv_bias: Union[bool, str] = 'auto',
        conv_cfg: OptConfigType = None,
        norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
        act_cfg: ConfigType = dict(type='Swish'),
        loss_cls: ConfigType = dict(
            type='CrossEntropyLoss',
            use_sigmoid=True,
            reduction='sum',
            loss_weight=1.0),
        loss_bbox: ConfigType = dict(
            type='IoULoss',
            mode='square',
            eps=1e-16,
            reduction='sum',
            loss_weight=5.0),
        loss_obj: ConfigType = dict(
            type='CrossEntropyLoss',
            use_sigmoid=True,
            reduction='sum',
            loss_weight=1.0),
        loss_l1: ConfigType = dict(
            type='L1Loss', reduction='sum', loss_weight=1.0),
        train_cfg: OptConfigType = None,
        test_cfg: OptConfigType = None,
        init_cfg: OptMultiConfig = dict(
            type='Kaiming',
            layer='Conv2d',
            a=math.sqrt(5),
            distribution='uniform',
            mode='fan_in',
            nonlinearity='leaky_relu')
    ) -> None:

        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.cls_out_channels = num_classes
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.stacked_convs = stacked_convs
        self.strides = strides
        self.use_depthwise = use_depthwise
        self.dcn_on_last_conv = dcn_on_last_conv
        assert conv_bias == 'auto' or isinstance(conv_bias, bool)
        self.conv_bias = conv_bias
        self.use_sigmoid_cls = True

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg

        self.loss_cls: nn.Module = MODELS.build(loss_cls)
        self.loss_bbox: nn.Module = MODELS.build(loss_bbox)
        self.loss_obj: nn.Module = MODELS.build(loss_obj)

        self.use_l1 = False  # This flag will be modified by hooks.
        self.loss_l1: nn.Module = MODELS.build(loss_l1)

        self.prior_generator = MlvlPointGenerator(strides, offset=0)

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg

        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            # YOLOX does not support sampling
            self.sampler = PseudoSampler()

        self._init_layers()

    def _init_layers(self) -> None:
        """Initialize heads for all level feature maps."""
        self.multi_level_cls_convs = nn.ModuleList()
        self.multi_level_reg_convs = nn.ModuleList()
        self.multi_level_conv_cls = nn.ModuleList()
        self.multi_level_conv_reg = nn.ModuleList()
        self.multi_level_conv_obj = nn.ModuleList()
        for _ in self.strides:
            self.multi_level_cls_convs.append(self._build_stacked_convs())
            self.multi_level_reg_convs.append(self._build_stacked_convs())
            conv_cls, conv_reg, conv_obj = self._build_predictor()
            self.multi_level_conv_cls.append(conv_cls)
            self.multi_level_conv_reg.append(conv_reg)
            self.multi_level_conv_obj.append(conv_obj)

    def _build_stacked_convs(self) -> nn.Sequential:
        """Initialize conv layers of a single level head."""
        conv = DepthwiseSeparableConvModule \
            if self.use_depthwise else ConvModule
        stacked_convs = []
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            if self.dcn_on_last_conv and i == self.stacked_convs - 1:
                conv_cfg = dict(type='DCNv2')
            else:
                conv_cfg = self.conv_cfg
            stacked_convs.append(
                conv(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    bias=self.conv_bias))
        return nn.Sequential(*stacked_convs)

    def _build_predictor(self) -> Tuple[nn.Module, nn.Module, nn.Module]:
        """Initialize predictor layers of a single level head."""
        conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        conv_reg = nn.Conv2d(self.feat_channels, 4, 1)
        conv_obj = nn.Conv2d(self.feat_channels, 1, 1)
        return conv_cls, conv_reg, conv_obj

    def init_weights(self) -> None:
        """Initialize weights of the head."""
        super(YOLOXHead, self).init_weights()
        # Use prior in model initialization to improve stability
        bias_init = bias_init_with_prob(0.01)
        for conv_cls, conv_obj in zip(self.multi_level_conv_cls,
                                      self.multi_level_conv_obj):
            conv_cls.bias.data.fill_(bias_init)
            conv_obj.bias.data.fill_(bias_init)

    def forward_single(self, x: Tensor, cls_convs: nn.Module,
                       reg_convs: nn.Module, conv_cls: nn.Module,
                       conv_reg: nn.Module,
                       conv_obj: nn.Module) -> Tuple[Tensor, Tensor, Tensor]:
        """Forward feature of a single scale level."""

        cls_feat = cls_convs(x)
        reg_feat = reg_convs(x)

        cls_score = conv_cls(cls_feat)
        bbox_pred = conv_reg(reg_feat)
        objectness = conv_obj(reg_feat)

        return cls_score, bbox_pred, objectness

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            Tuple[List]: A tuple of multi-level classification scores, bbox
            predictions, and objectnesses.
        """

        return multi_apply(self.forward_single, x, self.multi_level_cls_convs,
                           self.multi_level_reg_convs,
                           self.multi_level_conv_cls,
                           self.multi_level_conv_reg,
                           self.multi_level_conv_obj)

    def predict_by_feat(self,
                        cls_scores: List[Tensor],
                        bbox_preds: List[Tensor],
                        objectnesses: Optional[List[Tensor]],
                        batch_img_metas: Optional[List[dict]] = None,
                        cfg: Optional[ConfigDict] = None,
                        rescale: bool = False,
                        with_nms: bool = True) -> List[InstanceData]:
        """Transform a batch of output features extracted by the head into
        bbox results.
        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            objectnesses (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            batch_img_metas (list[dict], Optional): Batch image meta info.
                Defaults to None.
            cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            list[:obj:`InstanceData`]: Object detection results of each image
            after the post process. Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
        cfg = self.test_cfg if cfg is None else cfg

        num_imgs = len(batch_img_metas)
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)

        # flatten cls_scores, bbox_preds and objectness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                  self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_objectness = [
            objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
            for objectness in objectnesses
        ]

        flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
        flatten_priors = torch.cat(mlvl_priors)

        flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)

        result_list = []
        for img_id, img_meta in enumerate(batch_img_metas):
            max_scores, labels = torch.max(flatten_cls_scores[img_id], 1)
            valid_mask = flatten_objectness[
                img_id] * max_scores >= cfg.score_thr
            results = InstanceData(
                bboxes=flatten_bboxes[img_id][valid_mask],
                scores=max_scores[valid_mask] *
                flatten_objectness[img_id][valid_mask],
                labels=labels[valid_mask])

            result_list.append(
                self._bbox_post_process(
                    results=results,
                    cfg=cfg,
                    rescale=rescale,
                    with_nms=with_nms,
                    img_meta=img_meta))

        return result_list

    def _bbox_decode(self, priors: Tensor, bbox_preds: Tensor) -> Tensor:
        """Decode regression results (delta_x, delta_x, w, h) to bboxes (tl_x,
        tl_y, br_x, br_y).

        Args:
            priors (Tensor): Center proiors of an image, has shape
                (num_instances, 2).
            bbox_preds (Tensor): Box energies / deltas for all instances,
                has shape (batch_size, num_instances, 4).

        Returns:
            Tensor: Decoded bboxes in (tl_x, tl_y, br_x, br_y) format. Has
            shape (batch_size, num_instances, 4).
        """
        xys = (bbox_preds[..., :2] * priors[:, 2:]) + priors[:, :2]
        whs = bbox_preds[..., 2:].exp() * priors[:, 2:]

        tl_x = (xys[..., 0] - whs[..., 0] / 2)
        tl_y = (xys[..., 1] - whs[..., 1] / 2)
        br_x = (xys[..., 0] + whs[..., 0] / 2)
        br_y = (xys[..., 1] + whs[..., 1] / 2)

        decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1)
        return decoded_bboxes

    def _bbox_post_process(self,
                           results: InstanceData,
                           cfg: ConfigDict,
                           rescale: bool = False,
                           with_nms: bool = True,
                           img_meta: Optional[dict] = None) -> InstanceData:
        """bbox post-processing method.

        The boxes would be rescaled to the original image scale and do
        the nms operation. Usually `with_nms` is False is used for aug test.

        Args:
            results (:obj:`InstaceData`): Detection instance results,
                each item has shape (num_bboxes, ).
            cfg (mmengine.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default to False.
            with_nms (bool): If True, do nms before return boxes.
                Default to True.
            img_meta (dict, optional): Image meta info. Defaults to None.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
        """

        if rescale:
            assert img_meta.get('scale_factor') is not None
            results.bboxes /= results.bboxes.new_tensor(
                img_meta['scale_factor']).repeat((1, 2))

        if with_nms and results.bboxes.numel() > 0:
            det_bboxes, keep_idxs = batched_nms(results.bboxes, results.scores,
                                                results.labels, cfg.nms)
            results = results[keep_idxs]
            # some nms would reweight the score, such as softnms
            results.scores = det_bboxes[:, -1]
        return results

    def loss_by_feat(
            self,
            cls_scores: Sequence[Tensor],
            bbox_preds: Sequence[Tensor],
            objectnesses: Sequence[Tensor],
            batch_gt_instances: Sequence[InstanceData],
            batch_img_metas: Sequence[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (Sequence[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            objectnesses (Sequence[Tensor]): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
        Returns:
            dict[str, Tensor]: A dictionary of losses.
        """
        num_imgs = len(batch_img_metas)
        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None] * num_imgs

        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)

        flatten_cls_preds = [
            cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                 self.cls_out_channels)
            for cls_pred in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_objectness = [
            objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
            for objectness in objectnesses
        ]

        flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_objectness = torch.cat(flatten_objectness, dim=1)
        flatten_priors = torch.cat(mlvl_priors)
        flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)

        (pos_masks, cls_targets, obj_targets, bbox_targets, l1_targets,
         num_fg_imgs) = multi_apply(
             self._get_targets_single,
             flatten_priors.unsqueeze(0).repeat(num_imgs, 1, 1),
             flatten_cls_preds.detach(), flatten_bboxes.detach(),
             flatten_objectness.detach(), batch_gt_instances, batch_img_metas,
             batch_gt_instances_ignore)

        # The experimental results show that 'reduce_mean' can improve
        # performance on the COCO dataset.
        num_pos = torch.tensor(
            sum(num_fg_imgs),
            dtype=torch.float,
            device=flatten_cls_preds.device)
        num_total_samples = max(reduce_mean(num_pos), 1.0)

        pos_masks = torch.cat(pos_masks, 0)
        cls_targets = torch.cat(cls_targets, 0)
        obj_targets = torch.cat(obj_targets, 0)
        bbox_targets = torch.cat(bbox_targets, 0)
        if self.use_l1:
            l1_targets = torch.cat(l1_targets, 0)

        loss_obj = self.loss_obj(flatten_objectness.view(-1, 1),
                                 obj_targets) / num_total_samples
        if num_pos > 0:
            loss_cls = self.loss_cls(
                flatten_cls_preds.view(-1, self.num_classes)[pos_masks],
                cls_targets) / num_total_samples
            loss_bbox = self.loss_bbox(
                flatten_bboxes.view(-1, 4)[pos_masks],
                bbox_targets) / num_total_samples
        else:
            # Avoid cls and reg branch not participating in the gradient
            # propagation when there is no ground-truth in the images.
            # For more details, please refer to
            # https://github.com/open-mmlab/mmdetection/issues/7298
            loss_cls = flatten_cls_preds.sum() * 0
            loss_bbox = flatten_bboxes.sum() * 0

        loss_dict = dict(
            loss_cls=loss_cls, loss_bbox=loss_bbox, loss_obj=loss_obj)

        if self.use_l1:
            if num_pos > 0:
                loss_l1 = self.loss_l1(
                    flatten_bbox_preds.view(-1, 4)[pos_masks],
                    l1_targets) / num_total_samples
            else:
                # Avoid cls and reg branch not participating in the gradient
                # propagation when there is no ground-truth in the images.
                # For more details, please refer to
                # https://github.com/open-mmlab/mmdetection/issues/7298
                loss_l1 = flatten_bbox_preds.sum() * 0
            loss_dict.update(loss_l1=loss_l1)

        return loss_dict

    @torch.no_grad()
    def _get_targets_single(
            self,
            priors: Tensor,
            cls_preds: Tensor,
            decoded_bboxes: Tensor,
            objectness: Tensor,
            gt_instances: InstanceData,
            img_meta: dict,
            gt_instances_ignore: Optional[InstanceData] = None) -> tuple:
        """Compute classification, regression, and objectness targets for
        priors in a single image.

        Args:
            priors (Tensor): All priors of one image, a 2D-Tensor with shape
                [num_priors, 4] in [cx, xy, stride_w, stride_y] format.
            cls_preds (Tensor): Classification predictions of one image,
                a 2D-Tensor with shape [num_priors, num_classes]
            decoded_bboxes (Tensor): Decoded bboxes predictions of one image,
                a 2D-Tensor with shape [num_priors, 4] in [tl_x, tl_y,
                br_x, br_y] format.
            objectness (Tensor): Objectness predictions of one image,
                a 1D-Tensor with shape [num_priors]
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes`` and ``labels``
                attributes.
            img_meta (dict): Meta information for current image.
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
        Returns:
            tuple:
                foreground_mask (list[Tensor]): Binary mask of foreground
                targets.
                cls_target (list[Tensor]): Classification targets of an image.
                obj_target (list[Tensor]): Objectness targets of an image.
                bbox_target (list[Tensor]): BBox targets of an image.
                l1_target (int): BBox L1 targets of an image.
                num_pos_per_img (int): Number of positive samples in an image.
        """

        num_priors = priors.size(0)
        num_gts = len(gt_instances)
        # No target
        if num_gts == 0:
            cls_target = cls_preds.new_zeros((0, self.num_classes))
            bbox_target = cls_preds.new_zeros((0, 4))
            l1_target = cls_preds.new_zeros((0, 4))
            obj_target = cls_preds.new_zeros((num_priors, 1))
            foreground_mask = cls_preds.new_zeros(num_priors).bool()
            return (foreground_mask, cls_target, obj_target, bbox_target,
                    l1_target, 0)

        # YOLOX uses center priors with 0.5 offset to assign targets,
        # but use center priors without offset to regress bboxes.
        offset_priors = torch.cat(
            [priors[:, :2] + priors[:, 2:] * 0.5, priors[:, 2:]], dim=-1)

        scores = cls_preds.sigmoid() * objectness.unsqueeze(1).sigmoid()
        pred_instances = InstanceData(
            bboxes=decoded_bboxes, scores=scores.sqrt_(), priors=offset_priors)
        assign_result = self.assigner.assign(
            pred_instances=pred_instances,
            gt_instances=gt_instances,
            gt_instances_ignore=gt_instances_ignore)

        sampling_result = self.sampler.sample(assign_result, pred_instances,
                                              gt_instances)
        pos_inds = sampling_result.pos_inds
        num_pos_per_img = pos_inds.size(0)

        pos_ious = assign_result.max_overlaps[pos_inds]
        # IOU aware classification score
        cls_target = F.one_hot(sampling_result.pos_gt_labels,
                               self.num_classes) * pos_ious.unsqueeze(-1)
        obj_target = torch.zeros_like(objectness).unsqueeze(-1)
        obj_target[pos_inds] = 1
        bbox_target = sampling_result.pos_gt_bboxes
        l1_target = cls_preds.new_zeros((num_pos_per_img, 4))
        if self.use_l1:
            l1_target = self._get_l1_target(l1_target, bbox_target,
                                            priors[pos_inds])
        foreground_mask = torch.zeros_like(objectness).to(torch.bool)
        foreground_mask[pos_inds] = 1
        return (foreground_mask, cls_target, obj_target, bbox_target,
                l1_target, num_pos_per_img)

    def _get_l1_target(self,
                       l1_target: Tensor,
                       gt_bboxes: Tensor,
                       priors: Tensor,
                       eps: float = 1e-8) -> Tensor:
        """Convert gt bboxes to center offset and log width height."""
        gt_cxcywh = bbox_xyxy_to_cxcywh(gt_bboxes)
        l1_target[:, :2] = (gt_cxcywh[:, :2] - priors[:, :2]) / priors[:, 2:]
        l1_target[:, 2:] = torch.log(gt_cxcywh[:, 2:] / priors[:, 2:] + eps)
        return l1_target