yolof_head.py 17 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, is_norm
from mmengine.model import bias_init_with_prob, constant_init, normal_init
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
from ..task_modules.prior_generators import anchor_inside_flags
from ..utils import levels_to_images, multi_apply, unmap
from .anchor_head import AnchorHead

INF = 1e8


@MODELS.register_module()
class YOLOFHead(AnchorHead):
    """Detection Head of `YOLOF <https://arxiv.org/abs/2103.09460>`_

    Args:
        num_classes (int): The number of object classes (w/o background)
        in_channels (list[int]): The number of input channels per scale.
        cls_num_convs (int): The number of convolutions of cls branch.
           Defaults to 2.
        reg_num_convs (int): The number of convolutions of reg branch.
           Defaults to 4.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
            layer. Defaults to ``dict(type='BN', requires_grad=True)``.
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: List[int],
                 num_cls_convs: int = 2,
                 num_reg_convs: int = 4,
                 norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
                 **kwargs) -> None:
        self.num_cls_convs = num_cls_convs
        self.num_reg_convs = num_reg_convs
        self.norm_cfg = norm_cfg
        super().__init__(
            num_classes=num_classes, in_channels=in_channels, **kwargs)

    def _init_layers(self) -> None:
        cls_subnet = []
        bbox_subnet = []
        for i in range(self.num_cls_convs):
            cls_subnet.append(
                ConvModule(
                    self.in_channels,
                    self.in_channels,
                    kernel_size=3,
                    padding=1,
                    norm_cfg=self.norm_cfg))
        for i in range(self.num_reg_convs):
            bbox_subnet.append(
                ConvModule(
                    self.in_channels,
                    self.in_channels,
                    kernel_size=3,
                    padding=1,
                    norm_cfg=self.norm_cfg))
        self.cls_subnet = nn.Sequential(*cls_subnet)
        self.bbox_subnet = nn.Sequential(*bbox_subnet)
        self.cls_score = nn.Conv2d(
            self.in_channels,
            self.num_base_priors * self.num_classes,
            kernel_size=3,
            stride=1,
            padding=1)
        self.bbox_pred = nn.Conv2d(
            self.in_channels,
            self.num_base_priors * 4,
            kernel_size=3,
            stride=1,
            padding=1)
        self.object_pred = nn.Conv2d(
            self.in_channels,
            self.num_base_priors,
            kernel_size=3,
            stride=1,
            padding=1)

    def init_weights(self) -> None:
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                normal_init(m, mean=0, std=0.01)
            if is_norm(m):
                constant_init(m, 1)

        # Use prior in model initialization to improve stability
        bias_cls = bias_init_with_prob(0.01)
        torch.nn.init.constant_(self.cls_score.bias, bias_cls)

    def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]:
        """Forward feature of a single scale level.

        Args:
            x (Tensor): Features of a single scale level.

        Returns:
            tuple:
                normalized_cls_score (Tensor): Normalized Cls scores for a \
                    single scale level, the channels number is \
                    num_base_priors * num_classes.
                bbox_reg (Tensor): Box energies / deltas for a single scale \
                    level, the channels number is num_base_priors * 4.
        """
        cls_score = self.cls_score(self.cls_subnet(x))
        N, _, H, W = cls_score.shape
        cls_score = cls_score.view(N, -1, self.num_classes, H, W)

        reg_feat = self.bbox_subnet(x)
        bbox_reg = self.bbox_pred(reg_feat)
        objectness = self.object_pred(reg_feat)

        # implicit objectness
        objectness = objectness.view(N, -1, 1, H, W)
        normalized_cls_score = cls_score + objectness - torch.log(
            1. + torch.clamp(cls_score.exp(), max=INF) +
            torch.clamp(objectness.exp(), max=INF))
        normalized_cls_score = normalized_cls_score.view(N, -1, H, W)
        return normalized_cls_score, bbox_reg

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                has shape (N, num_anchors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict: A dictionary of loss components.
        """
        assert len(cls_scores) == 1
        assert self.prior_generator.num_levels == 1

        device = cls_scores[0].device
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        # The output level is always 1
        anchor_list = [anchors[0] for anchors in anchor_list]
        valid_flag_list = [valid_flags[0] for valid_flags in valid_flag_list]

        cls_scores_list = levels_to_images(cls_scores)
        bbox_preds_list = levels_to_images(bbox_preds)

        cls_reg_targets = self.get_targets(
            cls_scores_list,
            bbox_preds_list,
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)
        if cls_reg_targets is None:
            return None
        (batch_labels, batch_label_weights, avg_factor, batch_bbox_weights,
         batch_pos_predicted_boxes, batch_target_boxes) = cls_reg_targets

        flatten_labels = batch_labels.reshape(-1)
        batch_label_weights = batch_label_weights.reshape(-1)
        cls_score = cls_scores[0].permute(0, 2, 3,
                                          1).reshape(-1, self.cls_out_channels)

        avg_factor = reduce_mean(
            torch.tensor(avg_factor, dtype=torch.float, device=device)).item()

        # classification loss
        loss_cls = self.loss_cls(
            cls_score,
            flatten_labels,
            batch_label_weights,
            avg_factor=avg_factor)

        # regression loss
        if batch_pos_predicted_boxes.shape[0] == 0:
            # no pos sample
            loss_bbox = batch_pos_predicted_boxes.sum() * 0
        else:
            loss_bbox = self.loss_bbox(
                batch_pos_predicted_boxes,
                batch_target_boxes,
                batch_bbox_weights.float(),
                avg_factor=avg_factor)

        return dict(loss_cls=loss_cls, loss_bbox=loss_bbox)

    def get_targets(self,
                    cls_scores_list: List[Tensor],
                    bbox_preds_list: List[Tensor],
                    anchor_list: List[Tensor],
                    valid_flag_list: List[Tensor],
                    batch_gt_instances: InstanceList,
                    batch_img_metas: List[dict],
                    batch_gt_instances_ignore: OptInstanceList = None,
                    unmap_outputs: bool = True):
        """Compute regression and classification targets for anchors in
        multiple images.

        Args:
            cls_scores_list (list[Tensor]): Classification scores of
                each image. each is a 4D-tensor, the shape is
                (h * w, num_anchors * num_classes).
            bbox_preds_list (list[Tensor]): Bbox preds of each image.
                each is a 4D-tensor, the shape is (h * w, num_anchors * 4).
            anchor_list (list[Tensor]): Anchors of each image. Each element of
                is a tensor of shape (h * w * num_anchors, 4).
            valid_flag_list (list[Tensor]): Valid flags of each image. Each
               element of is a tensor of shape (h * w * num_anchors, )
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - batch_labels (Tensor): Label of all images. Each element \
                    of is a tensor of shape (batch, h * w * num_anchors)
                - batch_label_weights (Tensor): Label weights of all images \
                    of is a tensor of shape (batch, h * w * num_anchors)
                - num_total_pos (int): Number of positive samples in all \
                    images.
                - num_total_neg (int): Number of negative samples in all \
                    images.
            additional_returns: This function enables user-defined returns from
                `self._get_targets_single`. These returns are currently refined
                to properties at each feature map (i.e. having HxW dimension).
                The results will be concatenated after the end
        """
        num_imgs = len(batch_img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        # compute targets for each image
        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None] * num_imgs
        results = multi_apply(
            self._get_targets_single,
            bbox_preds_list,
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore,
            unmap_outputs=unmap_outputs)
        (all_labels, all_label_weights, pos_inds, neg_inds,
         sampling_results_list) = results[:5]
        # Get `avg_factor` of all images, which calculate in `SamplingResult`.
        # When using sampling method, avg_factor is usually the sum of
        # positive and negative priors. When using `PseudoSampler`,
        # `avg_factor` is usually equal to the number of positive priors.
        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])
        rest_results = list(results[5:])  # user-added return values

        batch_labels = torch.stack(all_labels, 0)
        batch_label_weights = torch.stack(all_label_weights, 0)

        res = (batch_labels, batch_label_weights, avg_factor)
        for i, rests in enumerate(rest_results):  # user-added return values
            rest_results[i] = torch.cat(rests, 0)

        return res + tuple(rest_results)

    def _get_targets_single(self,
                            bbox_preds: Tensor,
                            flat_anchors: Tensor,
                            valid_flags: Tensor,
                            gt_instances: InstanceData,
                            img_meta: dict,
                            gt_instances_ignore: Optional[InstanceData] = None,
                            unmap_outputs: bool = True) -> tuple:
        """Compute regression and classification targets for anchors in a
        single image.

        Args:
            bbox_preds (Tensor): Bbox prediction of the image, which
                shape is (h * w ,4)
            flat_anchors (Tensor): Anchors of the image, which shape is
                (h * w * num_anchors ,4)
            valid_flags (Tensor): Valid flags of the image, which shape is
                (h * w * num_anchors,).
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes`` and ``labels``
                attributes.
            img_meta (dict): Meta information for current image.
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple:
                labels (Tensor): Labels of image, which shape is
                    (h * w * num_anchors, ).
                label_weights (Tensor): Label weights of image, which shape is
                    (h * w * num_anchors, ).
                pos_inds (Tensor): Pos index of image.
                neg_inds (Tensor): Neg index of image.
                sampling_result (obj:`SamplingResult`): Sampling result.
                pos_bbox_weights (Tensor): The Weight of using to calculate
                    the bbox branch loss, which shape is (num, ).
                pos_predicted_boxes (Tensor): boxes predicted value of
                    using to calculate the bbox branch loss, which shape is
                    (num, 4).
                pos_target_boxes (Tensor): boxes target value of
                    using to calculate the bbox branch loss, which shape is
                    (num, 4).
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg['allowed_border'])
        if not inside_flags.any():
            raise ValueError(
                'There is no valid anchor inside the image boundary. Please '
                'check the image size and anchor sizes, or set '
                '``allowed_border`` to -1 to skip the condition.')

        # assign gt and sample anchors
        anchors = flat_anchors[inside_flags, :]
        bbox_preds = bbox_preds.reshape(-1, 4)
        bbox_preds = bbox_preds[inside_flags, :]

        # decoded bbox
        decoder_bbox_preds = self.bbox_coder.decode(anchors, bbox_preds)
        pred_instances = InstanceData(
            priors=anchors, decoder_priors=decoder_bbox_preds)
        assign_result = self.assigner.assign(pred_instances, gt_instances,
                                             gt_instances_ignore)

        pos_bbox_weights = assign_result.get_extra_property('pos_idx')
        pos_predicted_boxes = assign_result.get_extra_property(
            'pos_predicted_boxes')
        pos_target_boxes = assign_result.get_extra_property('target_boxes')

        sampling_result = self.sampler.sample(assign_result, pred_instances,
                                              gt_instances)
        num_valid_anchors = anchors.shape[0]
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            labels[pos_inds] = sampling_result.pos_gt_labels
            if self.train_cfg['pos_weight'] <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg['pos_weight']
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            labels = unmap(
                labels, num_total_anchors, inside_flags,
                fill=self.num_classes)  # fill bg label
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)

        return (labels, label_weights, pos_inds, neg_inds, sampling_result,
                pos_bbox_weights, pos_predicted_boxes, pos_target_boxes)