ov_coco_metric.py 11 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import os.path as osp
import tempfile
from collections import OrderedDict
from typing import Dict

import numpy as np
from mmengine.fileio import load
from mmengine.logging import MMLogger
from terminaltables import AsciiTable

from mmdet.datasets.api_wrappers import COCO, COCOeval, COCOevalMP
from mmdet.registry import METRICS
from .coco_metric import CocoMetric


@METRICS.register_module()
class OVCocoMetric(CocoMetric):

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()

        # split gt and prediction list
        gts, preds = zip(*results)

        tmp_dir = None
        if self.outfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            outfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            outfile_prefix = self.outfile_prefix

        if self._coco_api is None:
            # use converted gt json file to initialize coco api
            logger.info('Converting ground truth to coco format...')
            coco_json_path = self.gt_to_coco_json(
                gt_dicts=gts, outfile_prefix=outfile_prefix)
            self._coco_api = COCO(coco_json_path)

        # handle lazy init
        if self.cat_ids is None:
            self.cat_ids = self._coco_api.get_cat_ids(
                cat_names=self.dataset_meta['classes'])
            self.base_cat_ids = self._coco_api.get_cat_ids(
                cat_names=self.dataset_meta['base_classes'])
            self.novel_cat_ids = self._coco_api.get_cat_ids(
                cat_names=self.dataset_meta['novel_classes'])

        if self.img_ids is None:
            self.img_ids = self._coco_api.get_img_ids()

        # convert predictions to coco format and dump to json file
        result_files = self.results2json(preds, outfile_prefix)

        eval_results = OrderedDict()
        if self.format_only:
            logger.info('results are saved in '
                        f'{osp.dirname(outfile_prefix)}')
            return eval_results

        for metric in self.metrics:
            logger.info(f'Evaluating {metric}...')

            # TODO: May refactor fast_eval_recall to an independent metric?
            # fast eval recall
            if metric == 'proposal_fast':
                ar = self.fast_eval_recall(
                    preds, self.proposal_nums, self.iou_thrs, logger=logger)
                log_msg = []
                for i, num in enumerate(self.proposal_nums):
                    eval_results[f'AR@{num}'] = ar[i]
                    log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
                log_msg = ''.join(log_msg)
                logger.info(log_msg)
                continue

            # evaluate proposal, bbox and segm
            iou_type = 'bbox' if metric == 'proposal' else metric
            if metric not in result_files:
                raise KeyError(f'{metric} is not in results')
            try:
                predictions = load(result_files[metric])
                if iou_type == 'segm':
                    # Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331  # noqa
                    # When evaluating mask AP, if the results contain bbox,
                    # cocoapi will use the box area instead of the mask area
                    # for calculating the instance area. Though the overall AP
                    # is not affected, this leads to different
                    # small/medium/large mask AP results.
                    for x in predictions:
                        x.pop('bbox')
                coco_dt = self._coco_api.loadRes(predictions)

            except IndexError:
                logger.error(
                    'The testing results of the whole dataset is empty.')
                break

            if self.use_mp_eval:
                coco_eval = COCOevalMP(self._coco_api, coco_dt, iou_type)
            else:
                coco_eval = COCOeval(self._coco_api, coco_dt, iou_type)

            coco_eval.params.catIds = self.cat_ids
            coco_eval.params.imgIds = self.img_ids
            coco_eval.params.maxDets = list(self.proposal_nums)
            coco_eval.params.iouThrs = self.iou_thrs

            # mapping of cocoEval.stats
            coco_metric_names = {
                'mAP': 0,
                'mAP_50': 1,
                'mAP_75': 2,
                'mAP_s': 3,
                'mAP_m': 4,
                'mAP_l': 5,
                'AR@100': 6,
                'AR@300': 7,
                'AR@1000': 8,
                'AR_s@1000': 9,
                'AR_m@1000': 10,
                'AR_l@1000': 11
            }
            metric_items = self.metric_items
            if metric_items is not None:
                for metric_item in metric_items:
                    if metric_item not in coco_metric_names:
                        raise KeyError(
                            f'metric item "{metric_item}" is not supported')

            if metric == 'proposal':
                coco_eval.params.useCats = 0
                coco_eval.evaluate()
                coco_eval.accumulate()
                coco_eval.summarize()
                if metric_items is None:
                    metric_items = [
                        'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
                        'AR_m@1000', 'AR_l@1000'
                    ]

                for item in metric_items:
                    val = float(
                        f'{coco_eval.stats[coco_metric_names[item]]:.3f}')
                    eval_results[item] = val
            else:
                coco_eval.evaluate()
                coco_eval.accumulate()
                coco_eval.summarize()
                if self.classwise:  # Compute per-category AP
                    # Compute per-category AP
                    # from https://github.com/facebookresearch/detectron2/
                    precisions = coco_eval.eval['precision']
                    # precision: (iou, recall, cls, area range, max dets)
                    assert len(self.cat_ids) == precisions.shape[2]

                    results_per_category = []
                    for idx, cat_id in enumerate(self.cat_ids):
                        t = []
                        # area range index 0: all area ranges
                        # max dets index -1: typically 100 per image
                        nm = self._coco_api.loadCats(cat_id)[0]
                        precision = precisions[:, :, idx, 0, -1]
                        precision = precision[precision > -1]
                        if precision.size:
                            ap = np.mean(precision)
                        else:
                            ap = float('nan')
                        t.append(f'{nm["name"]}')
                        t.append(f'{round(ap, 3)}')
                        eval_results[f'{nm["name"]}_precision'] = round(ap, 3)

                        # indexes of IoU  @50 and @75
                        for iou in [0, 5]:
                            precision = precisions[iou, :, idx, 0, -1]
                            precision = precision[precision > -1]
                            if precision.size:
                                ap = np.mean(precision)
                            else:
                                ap = float('nan')
                            t.append(f'{round(ap, 3)}')

                        # indexes of area of small, median and large
                        for area in [1, 2, 3]:
                            precision = precisions[:, :, idx, area, -1]
                            precision = precision[precision > -1]
                            if precision.size:
                                ap = np.mean(precision)
                            else:
                                ap = float('nan')
                            t.append(f'{round(ap, 3)}')
                        results_per_category.append(tuple(t))

                    num_columns = len(results_per_category[0])
                    results_flatten = list(
                        itertools.chain(*results_per_category))
                    headers = [
                        'category', 'mAP', 'mAP_50', 'mAP_75', 'mAP_s',
                        'mAP_m', 'mAP_l'
                    ]
                    results_2d = itertools.zip_longest(*[
                        results_flatten[i::num_columns]
                        for i in range(num_columns)
                    ])
                    table_data = [headers]
                    table_data += [result for result in results_2d]
                    table = AsciiTable(table_data)
                    logger.info('\n' + table.table)

                # ------------get novel_ap50 and base_ap50---------
                precisions = coco_eval.eval['precision']
                assert len(self.cat_ids) == precisions.shape[2]
                base_inds, novel_inds = [], []

                for idx, catId in enumerate(self.cat_ids):
                    if catId in self.base_cat_ids:
                        base_inds.append(idx)
                    if catId in self.novel_cat_ids:
                        novel_inds.append(idx)

                base_ap = precisions[:, :, base_inds, 0, -1]
                novel_ap = precisions[:, :, novel_inds, 0, -1]
                base_ap50 = precisions[0, :, base_inds, 0, -1]
                novel_ap50 = precisions[0, :, novel_inds, 0, -1]

                eval_results['base_ap'] = np.mean(
                    base_ap[base_ap > -1]) if len(
                        base_ap[base_ap > -1]) else -1
                eval_results['novel_ap'] = np.mean(
                    novel_ap[novel_ap > -1]) if len(
                        novel_ap[novel_ap > -1]) else -1
                eval_results['base_ap50'] = np.mean(
                    base_ap50[base_ap50 > -1]) if len(
                        base_ap50[base_ap50 > -1]) else -1
                eval_results['novel_ap50'] = np.mean(
                    novel_ap50[novel_ap50 > -1]) if len(
                        novel_ap50[novel_ap50 > -1]) else -1
                # ------------get novel_ap50 and base_ap50---------
                if metric_items is None:
                    metric_items = [
                        'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
                    ]

                for metric_item in metric_items:
                    key = f'{metric}_{metric_item}'
                    val = coco_eval.stats[coco_metric_names[metric_item]]
                    eval_results[key] = float(f'{round(val, 3)}')

                ap = coco_eval.stats[:6]
                logger.info(f'{metric}_mAP_copypaste: {ap[0]:.3f} '
                            f'{ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
                            f'{ap[4]:.3f} {ap[5]:.3f}')

        if tmp_dir is not None:
            tmp_dir.cleanup()
        return eval_results