grefcoco_metric.py 4.23 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Optional, Sequence

import numpy as np
import torch
from mmengine.evaluator import BaseMetric
from mmengine.fileio import get_local_path
from mmengine.logging import MMLogger

from mmdet.datasets.api_wrappers import COCO
from mmdet.registry import METRICS
from ..functional import bbox_overlaps


# refer from https://github.com/henghuiding/gRefCOCO/blob/main/mdetr/datasets/refexp.py # noqa
@METRICS.register_module()
class gRefCOCOMetric(BaseMetric):
    default_prefix: Optional[str] = 'grefcoco'

    def __init__(self,
                 ann_file: Optional[str] = None,
                 metric: str = 'bbox',
                 iou_thrs: float = 0.5,
                 thresh_score: float = 0.7,
                 thresh_f1: float = 1.0,
                 **kwargs) -> None:
        super().__init__(**kwargs)
        self.metric = metric
        self.iou_thrs = iou_thrs
        self.thresh_score = thresh_score
        self.thresh_f1 = thresh_f1

        with get_local_path(ann_file) as local_path:
            self.coco = COCO(local_path)

    def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
        for data_sample in data_samples:
            result = dict()
            pred = data_sample['pred_instances']
            result['img_id'] = data_sample['img_id']
            result['bboxes'] = pred['bboxes'].cpu()
            result['scores'] = pred['scores'].cpu()
            self.results.append(result)

    def compute_metrics(self, results: list) -> Dict[str, float]:
        logger: MMLogger = MMLogger.get_current_instance()

        correct_image = 0
        num_image = 0
        nt = {'TP': 0, 'TN': 0, 'FP': 0, 'FN': 0}

        for result in results:
            img_id = result['img_id']
            TP = 0

            ann_ids = self.coco.getAnnIds(imgIds=img_id)
            target = self.coco.loadAnns(ann_ids[0])

            converted_bbox_all = []
            no_target_flag = False
            for one_target in target:
                if one_target['category_id'] == -1:
                    no_target_flag = True
                target_bbox = one_target['bbox']
                converted_bbox = [
                    target_bbox[0],
                    target_bbox[1],
                    target_bbox[2] + target_bbox[0],
                    target_bbox[3] + target_bbox[1],
                ]
                converted_bbox_all.append(
                    np.array(converted_bbox).reshape(-1, 4))
            gt_bbox_all = np.concatenate(converted_bbox_all, axis=0)

            idx = result['scores'] >= self.thresh_score
            filtered_boxes = result['bboxes'][idx]

            iou = bbox_overlaps(filtered_boxes.numpy(), gt_bbox_all)
            iou = torch.from_numpy(iou)

            num_prediction = filtered_boxes.shape[0]
            num_gt = gt_bbox_all.shape[0]
            if no_target_flag:
                if num_prediction >= 1:
                    nt['FN'] += 1
                else:
                    nt['TP'] += 1
                if num_prediction >= 1:
                    f_1 = 0.
                else:
                    f_1 = 1.0
            else:
                if num_prediction >= 1:
                    nt['TN'] += 1
                else:
                    nt['FP'] += 1
                for i in range(min(num_prediction, num_gt)):
                    top_value, top_index = torch.topk(iou.flatten(0, 1), 1)
                    if top_value < self.iou_thrs:
                        break
                    else:
                        top_index_x = top_index // num_gt
                        top_index_y = top_index % num_gt
                        TP += 1
                        iou[top_index_x[0], :] = 0.0
                        iou[:, top_index_y[0]] = 0.0
                FP = num_prediction - TP
                FN = num_gt - TP
                f_1 = 2 * TP / (2 * TP + FP + FN)

            if f_1 >= self.thresh_f1:
                correct_image += 1
            num_image += 1

        score = correct_image / max(num_image, 1)
        results = {
            'F1_score': score,
            'T_acc': nt['TN'] / (nt['TN'] + nt['FP']),
            'N_acc': nt['TP'] / (nt['TP'] + nt['FN'])
        }
        logger.info(results)
        return results