dod_metric.py 6.33 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) OpenMMLab. All rights reserved.
from collections import defaultdict
from typing import List, Optional, Sequence

import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.fileio import get_local_path
from mmengine.logging import MMLogger

from mmdet.datasets.api_wrappers import COCO, COCOeval
from mmdet.registry import METRICS


@METRICS.register_module()
class DODCocoMetric(BaseMetric):

    default_prefix: Optional[str] = 'dod'

    def __init__(self,
                 ann_file: Optional[str] = None,
                 collect_device: str = 'cpu',
                 outfile_prefix: Optional[str] = None,
                 backend_args: dict = None,
                 prefix: Optional[str] = None) -> None:
        super().__init__(collect_device=collect_device, prefix=prefix)
        self.outfile_prefix = outfile_prefix
        with get_local_path(ann_file, backend_args=backend_args) as local_path:
            self._coco_api = COCO(local_path)

    def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
        for data_sample in data_samples:
            result = dict()
            pred = data_sample['pred_instances']
            result['img_id'] = data_sample['img_id']
            result['bboxes'] = pred['bboxes'].cpu().numpy()
            result['scores'] = pred['scores'].cpu().numpy()

            result['labels'] = pred['labels'].cpu().numpy()
            result['labels'] = data_sample['sent_ids'][result['labels']]
            self.results.append(result)

    def xyxy2xywh(self, bbox: np.ndarray) -> list:
        """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO
        evaluation.

        Args:
            bbox (numpy.ndarray): The bounding boxes, shape (4, ), in
                ``xyxy`` order.

        Returns:
            list[float]: The converted bounding boxes, in ``xywh`` order.
        """

        _bbox: List = bbox.tolist()
        return [
            _bbox[0],
            _bbox[1],
            _bbox[2] - _bbox[0],
            _bbox[3] - _bbox[1],
        ]

    def results2json(self, results: Sequence[dict]) -> list:
        """Dump the detection results to a COCO style json file.

        There are 3 types of results: proposals, bbox predictions, mask
        predictions, and they have different data types. This method will
        automatically recognize the type, and dump them to json files.

        Args:
            results (Sequence[dict]): Testing results of the
                dataset.

        Returns:
            dict: Possible keys are "bbox", "segm", "proposal", and
            values are corresponding filenames.
        """
        bbox_json_results = []
        for idx, result in enumerate(results):
            image_id = result.get('img_id', idx)
            labels = result['labels']
            bboxes = result['bboxes']
            scores = result['scores']
            for i, label in enumerate(labels):
                data = dict()
                data['image_id'] = image_id
                data['bbox'] = self.xyxy2xywh(bboxes[i])
                data['score'] = float(scores[i])
                data['category_id'] = label
                bbox_json_results.append(data)
        return bbox_json_results

    def compute_metrics(self, results: list) -> dict:
        logger: MMLogger = MMLogger.get_current_instance()
        result_files = self.results2json(results)
        d3_res = self._coco_api.loadRes(result_files)
        cocoEval = COCOeval(self._coco_api, d3_res, 'bbox')
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()

        aps = cocoEval.eval['precision'][:, :, :, 0, -1]
        category_ids = self._coco_api.getCatIds()
        category_names = [
            cat['name'] for cat in self._coco_api.loadCats(category_ids)
        ]

        aps_lens = defaultdict(list)
        counter_lens = defaultdict(int)
        for i in range(len(category_names)):
            ap = aps[:, :, i]
            ap_value = ap[ap > -1].mean()
            if not np.isnan(ap_value):
                len_ref = len(category_names[i].split(' '))
                aps_lens[len_ref].append(ap_value)
                counter_lens[len_ref] += 1

        ap_sum_short = sum([sum(aps_lens[i]) for i in range(0, 4)])
        ap_sum_mid = sum([sum(aps_lens[i]) for i in range(4, 7)])
        ap_sum_long = sum([sum(aps_lens[i]) for i in range(7, 10)])
        ap_sum_very_long = sum([
            sum(aps_lens[i]) for i in range(10,
                                            max(counter_lens.keys()) + 1)
        ])
        c_sum_short = sum([counter_lens[i] for i in range(1, 4)])
        c_sum_mid = sum([counter_lens[i] for i in range(4, 7)])
        c_sum_long = sum([counter_lens[i] for i in range(7, 10)])
        c_sum_very_long = sum(
            [counter_lens[i] for i in range(10,
                                            max(counter_lens.keys()) + 1)])
        map_short = ap_sum_short / c_sum_short
        map_mid = ap_sum_mid / c_sum_mid
        map_long = ap_sum_long / c_sum_long
        map_very_long = ap_sum_very_long / c_sum_very_long

        coco_metric_names = {
            'mAP': 0,
            'mAP_50': 1,
            'mAP_75': 2,
            'mAP_s': 3,
            'mAP_m': 4,
            'mAP_l': 5,
            'AR@100': 6,
            'AR@300': 7,
            'AR@1000': 8,
            'AR_s@1000': 9,
            'AR_m@1000': 10,
            'AR_l@1000': 11
        }
        metric_items = ['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']

        eval_results = {}
        for metric_item in metric_items:
            key = f'{metric_item}'
            val = cocoEval.stats[coco_metric_names[metric_item]]
            eval_results[key] = float(f'{round(val, 3)}')

        ap = cocoEval.stats[:6]
        logger.info(f'mAP_copypaste: {ap[0]:.3f} '
                    f'{ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
                    f'{ap[4]:.3f} {ap[5]:.3f}')

        logger.info(f'mAP over reference length: short - {map_short:.4f}, '
                    f'mid - {map_mid:.4f}, long - {map_long:.4f}, '
                    f'very long - {map_very_long:.4f}')
        eval_results['mAP_short'] = float(f'{round(map_short, 3)}')
        eval_results['mAP_mid'] = float(f'{round(map_mid, 3)}')
        eval_results['mAP_long'] = float(f'{round(map_long, 3)}')
        eval_results['mAP_very_long'] = float(f'{round(map_very_long, 3)}')
        return eval_results