text_transformers.py 7.95 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) OpenMMLab. All rights reserved.
import json

from mmcv.transforms import BaseTransform

from mmdet.registry import TRANSFORMS
from mmdet.structures.bbox import BaseBoxes

try:
    from transformers import AutoTokenizer
    from transformers import BertModel as HFBertModel
except ImportError:
    AutoTokenizer = None
    HFBertModel = None

import random
import re

import numpy as np


def clean_name(name):
    name = re.sub(r'\(.*\)', '', name)
    name = re.sub(r'_', ' ', name)
    name = re.sub(r'  ', ' ', name)
    name = name.lower()
    return name


def check_for_positive_overflow(gt_bboxes, gt_labels, text, tokenizer,
                                max_tokens):
    # Check if we have too many positive labels
    # generate a caption by appending the positive labels
    positive_label_list = np.unique(gt_labels).tolist()
    # random shuffule so we can sample different annotations
    # at different epochs
    random.shuffle(positive_label_list)

    kept_lables = []
    length = 0

    for index, label in enumerate(positive_label_list):

        label_text = clean_name(text[str(label)]) + '. '

        tokenized = tokenizer.tokenize(label_text)

        length += len(tokenized)

        if length > max_tokens:
            break
        else:
            kept_lables.append(label)

    keep_box_index = []
    keep_gt_labels = []
    for i in range(len(gt_labels)):
        if gt_labels[i] in kept_lables:
            keep_box_index.append(i)
            keep_gt_labels.append(gt_labels[i])

    return gt_bboxes[keep_box_index], np.array(
        keep_gt_labels, dtype=np.long), length


def generate_senetence_given_labels(positive_label_list, negative_label_list,
                                    text):
    label_to_positions = {}

    label_list = negative_label_list + positive_label_list

    random.shuffle(label_list)

    pheso_caption = ''

    label_remap_dict = {}
    for index, label in enumerate(label_list):

        start_index = len(pheso_caption)

        pheso_caption += clean_name(text[str(label)])

        end_index = len(pheso_caption)

        if label in positive_label_list:
            label_to_positions[index] = [[start_index, end_index]]
            label_remap_dict[int(label)] = index

        # if index != len(label_list) - 1:
        #     pheso_caption += '. '
        pheso_caption += '. '

    return label_to_positions, pheso_caption, label_remap_dict


@TRANSFORMS.register_module()
class RandomSamplingNegPos(BaseTransform):

    def __init__(self,
                 tokenizer_name,
                 num_sample_negative=85,
                 max_tokens=256,
                 full_sampling_prob=0.5,
                 label_map_file=None):
        if AutoTokenizer is None:
            raise RuntimeError(
                'transformers is not installed, please install it by: '
                'pip install transformers.')

        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
        self.num_sample_negative = num_sample_negative
        self.full_sampling_prob = full_sampling_prob
        self.max_tokens = max_tokens
        self.label_map = None
        if label_map_file:
            with open(label_map_file, 'r') as file:
                self.label_map = json.load(file)

    def transform(self, results: dict) -> dict:
        if 'phrases' in results:
            return self.vg_aug(results)
        else:
            return self.od_aug(results)

    def vg_aug(self, results):
        gt_bboxes = results['gt_bboxes']
        if isinstance(gt_bboxes, BaseBoxes):
            gt_bboxes = gt_bboxes.tensor
        gt_labels = results['gt_bboxes_labels']
        text = results['text'].lower().strip()
        if not text.endswith('.'):
            text = text + '. '

        phrases = results['phrases']
        # TODO: add neg
        positive_label_list = np.unique(gt_labels).tolist()
        label_to_positions = {}
        for label in positive_label_list:
            label_to_positions[label] = phrases[label]['tokens_positive']

        results['gt_bboxes'] = gt_bboxes
        results['gt_bboxes_labels'] = gt_labels

        results['text'] = text
        results['tokens_positive'] = label_to_positions
        return results

    def od_aug(self, results):
        gt_bboxes = results['gt_bboxes']
        if isinstance(gt_bboxes, BaseBoxes):
            gt_bboxes = gt_bboxes.tensor
        gt_labels = results['gt_bboxes_labels']

        if 'text' not in results:
            assert self.label_map is not None
            text = self.label_map
        else:
            text = results['text']

        original_box_num = len(gt_labels)
        # If the category name is in the format of 'a/b' (in object365),
        # we randomly select one of them.
        for key, value in text.items():
            if '/' in value:
                text[key] = random.choice(value.split('/')).strip()

        gt_bboxes, gt_labels, positive_caption_length = \
            check_for_positive_overflow(gt_bboxes, gt_labels,
                                        text, self.tokenizer, self.max_tokens)

        if len(gt_bboxes) < original_box_num:
            print('WARNING: removed {} boxes due to positive caption overflow'.
                  format(original_box_num - len(gt_bboxes)))

        valid_negative_indexes = list(text.keys())

        positive_label_list = np.unique(gt_labels).tolist()
        full_negative = self.num_sample_negative

        if full_negative > len(valid_negative_indexes):
            full_negative = len(valid_negative_indexes)

        outer_prob = random.random()

        if outer_prob < self.full_sampling_prob:
            # c. probability_full: add both all positive and all negatives
            num_negatives = full_negative
        else:
            if random.random() < 1.0:
                num_negatives = np.random.choice(max(1, full_negative)) + 1
            else:
                num_negatives = full_negative

        # Keep some negatives
        negative_label_list = set()
        if num_negatives != -1:
            if num_negatives > len(valid_negative_indexes):
                num_negatives = len(valid_negative_indexes)

            for i in np.random.choice(
                    valid_negative_indexes, size=num_negatives, replace=False):
                if int(i) not in positive_label_list:
                    negative_label_list.add(i)

        random.shuffle(positive_label_list)

        negative_label_list = list(negative_label_list)
        random.shuffle(negative_label_list)

        negative_max_length = self.max_tokens - positive_caption_length
        screened_negative_label_list = []

        for negative_label in negative_label_list:
            label_text = clean_name(text[str(negative_label)]) + '. '

            tokenized = self.tokenizer.tokenize(label_text)

            negative_max_length -= len(tokenized)

            if negative_max_length > 0:
                screened_negative_label_list.append(negative_label)
            else:
                break
        negative_label_list = screened_negative_label_list
        label_to_positions, pheso_caption, label_remap_dict = \
            generate_senetence_given_labels(positive_label_list,
                                            negative_label_list, text)

        # label remap
        if len(gt_labels) > 0:
            gt_labels = np.vectorize(lambda x: label_remap_dict[x])(gt_labels)

        results['gt_bboxes'] = gt_bboxes
        results['gt_bboxes_labels'] = gt_labels

        results['text'] = pheso_caption
        results['tokens_positive'] = label_to_positions

        return results


@TRANSFORMS.register_module()
class LoadTextAnnotations(BaseTransform):

    def transform(self, results: dict) -> dict:
        if 'phrases' in results:
            tokens_positive = [
                phrase['tokens_positive']
                for phrase in results['phrases'].values()
            ]
            results['tokens_positive'] = tokens_positive
        else:
            text = results['text']
            results['text'] = list(text.values())
        return results