image_demo.py 6.59 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) OpenMMLab. All rights reserved.
"""Image Demo.

This script adopts a new infenence class, currently supports image path,
np.array and folder input formats, and will support video and webcam
in the future.

Example:
    Save visualizations and predictions results::

        python demo/image_demo.py demo/demo.jpg rtmdet-s

        python demo/image_demo.py demo/demo.jpg \
        configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \
        --weights rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts bench

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts 'bench . car .'

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365
        --texts 'bench . car .' -c

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 \
        --texts 'There are a lot of cars here.'

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 \
        --texts '$: coco'

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 \
        --texts '$: lvis' --pred-score-thr 0.7 \
        --palette random --chunked-size 80

        python demo/image_demo.py demo/demo.jpg \
        grounding_dino_swin-t_pretrain_obj365_goldg_cap4m \
        --texts '$: lvis' --pred-score-thr 0.4 \
        --palette random --chunked-size 80

        python demo/image_demo.py demo/demo.jpg \
        grounding_dino_swin-t_pretrain_obj365_goldg_cap4m \
        --texts "a red car in the upper right corner" \
        --tokens-positive -1

    Visualize prediction results::

        python demo/image_demo.py demo/demo.jpg rtmdet-ins-s --show

        python demo/image_demo.py demo/demo.jpg rtmdet-ins_s_8xb32-300e_coco \
        --show
"""

import ast
from argparse import ArgumentParser

from mmengine.logging import print_log

from mmdet.apis import DetInferencer
from mmdet.evaluation import get_classes


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        'inputs', type=str, help='Input image file or folder path.')
    parser.add_argument(
        'model',
        type=str,
        help='Config or checkpoint .pth file or the model name '
        'and alias defined in metafile. The model configuration '
        'file will try to read from .pth if the parameter is '
        'a .pth weights file.')
    parser.add_argument('--weights', default=None, help='Checkpoint file')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='outputs',
        help='Output directory of images or prediction results.')
    # Once you input a format similar to $: xxx, it indicates that
    # the prompt is based on the dataset class name.
    # support $: coco, $: voc, $: cityscapes, $: lvis, $: imagenet_det.
    # detail to `mmdet/evaluation/functional/class_names.py`
    parser.add_argument(
        '--texts', help='text prompt, such as "bench . car .", "$: coco"')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--pred-score-thr',
        type=float,
        default=0.3,
        help='bbox score threshold')
    parser.add_argument(
        '--batch-size', type=int, default=1, help='Inference batch size.')
    parser.add_argument(
        '--show',
        action='store_true',
        help='Display the image in a popup window.')
    parser.add_argument(
        '--no-save-vis',
        action='store_true',
        help='Do not save detection vis results')
    parser.add_argument(
        '--no-save-pred',
        action='store_true',
        help='Do not save detection json results')
    parser.add_argument(
        '--print-result',
        action='store_true',
        help='Whether to print the results.')
    parser.add_argument(
        '--palette',
        default='none',
        choices=['coco', 'voc', 'citys', 'random', 'none'],
        help='Color palette used for visualization')
    # only for GLIP and Grounding DINO
    parser.add_argument(
        '--custom-entities',
        '-c',
        action='store_true',
        help='Whether to customize entity names? '
        'If so, the input text should be '
        '"cls_name1 . cls_name2 . cls_name3 ." format')
    parser.add_argument(
        '--chunked-size',
        '-s',
        type=int,
        default=-1,
        help='If the number of categories is very large, '
        'you can specify this parameter to truncate multiple predictions.')
    # only for Grounding DINO
    parser.add_argument(
        '--tokens-positive',
        '-p',
        type=str,
        help='Used to specify which locations in the input text are of '
        'interest to the user. -1 indicates that no area is of interest, '
        'None indicates ignoring this parameter. '
        'The two-dimensional array represents the start and end positions.')

    call_args = vars(parser.parse_args())

    if call_args['no_save_vis'] and call_args['no_save_pred']:
        call_args['out_dir'] = ''

    if call_args['model'].endswith('.pth'):
        print_log('The model is a weight file, automatically '
                  'assign the model to --weights')
        call_args['weights'] = call_args['model']
        call_args['model'] = None

    if call_args['texts'] is not None:
        if call_args['texts'].startswith('$:'):
            dataset_name = call_args['texts'][3:].strip()
            class_names = get_classes(dataset_name)
            call_args['texts'] = [tuple(class_names)]

    if call_args['tokens_positive'] is not None:
        call_args['tokens_positive'] = ast.literal_eval(
            call_args['tokens_positive'])

    init_kws = ['model', 'weights', 'device', 'palette']
    init_args = {}
    for init_kw in init_kws:
        init_args[init_kw] = call_args.pop(init_kw)

    return init_args, call_args


def main():
    init_args, call_args = parse_args()
    # TODO: Video and Webcam are currently not supported and
    #  may consume too much memory if your input folder has a lot of images.
    #  We will be optimized later.
    inferencer = DetInferencer(**init_args)

    chunked_size = call_args.pop('chunked_size')
    inferencer.model.test_cfg.chunked_size = chunked_size

    inferencer(**call_args)

    if call_args['out_dir'] != '' and not (call_args['no_save_vis']
                                           and call_args['no_save_pred']):
        print_log(f'results have been saved at {call_args["out_dir"]}')


if __name__ == '__main__':
    main()