vita_arch.py 17.3 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import math
from abc import ABC, abstractmethod

import torch
import torch.nn.functional as F

from vita.constants import AUDIO_TOKEN_INDEX, IGNORE_INDEX, IMAGE_TOKEN_INDEX

from .multimodal_encoder.builder import build_audio_encoder, build_vision_tower
from .multimodal_projector.builder import build_vision_projector


class VITAMetaModel:
    def __init__(self, config):
        super(VITAMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(
                config, delay_load=not getattr(config, "continuous_training", False)
            )
            if getattr(config, "continuous_training", False):
                config.continuous_training = False
            self.mm_projector = build_vision_projector(config)

        if hasattr(config, "mm_audio_encoder"):
            self.audio_encoder = build_audio_encoder(config)

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_audio_encoder(self):
        audio_encoder = getattr(self, "audio_encoder", None)
        return audio_encoder

    def initialize_vision_modules(self, model_args):
        vision_tower = model_args.vision_tower

        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter

        self.config.mm_vision_tower = vision_tower

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)
            self.vision_tower = vision_tower
        else:
            vision_tower = self.vision_tower
            vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, "mm_projector_type")
        self.config.mm_hidden_size = vision_tower.hidden_size

        if getattr(self, "mm_projector", None) is None:
            self.mm_projector = build_vision_projector(self.config)
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")

            def get_w(weights, keyword):
                return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))

    def initialize_audio_modules(self, model_args):
        audio_encoder = model_args.audio_encoder

        setattr(self.config, "mm_audio_encoder", audio_encoder)

        if self.get_audio_encoder() is None:
            #            audio_encoder = build_audio_encoder(model_args)
            audio_encoder = build_audio_encoder(self.config)
            self.audio_encoder = audio_encoder

        # from safetensors.torch import load_file
        # import os
        # audio_weights = {}
        # import pdb; pdb.set_trace()
        # for file_name in os.listdir(model_args.model_name_or_path):
        #    if file_name.endswith('safetensors'):
        #        audio_weights.update(
        #            {k[20:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if
        #                k.startswith('model.audio_encoder.')})
        # import pdb; pdb.set_trace()
        # self.audio_encoder.load_state_dict(audio_weights, strict=True)

        checkpoint = torch.load(model_args.audio_encoder + "/final.pt", map_location="cpu")
        model_dict = self.audio_encoder.state_dict()
        for key in model_dict.keys():
            if key in checkpoint.keys():
                if model_dict[key].shape == checkpoint[key].shape:
                    model_dict[key] = checkpoint[key]
                else:
                    print(
                        "Key {} has different shape, {} VS {}".format(
                            key, model_dict[key].shape, checkpoint[key].shape
                        )
                    )
            else:
                print("Key {} has not in resume model".format(key))
        # import pdb; pdb.set_trace()
        self.audio_encoder.load_state_dict(model_dict)


class VITAMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def get_audio_encoder(self):
        return self.get_model().get_audio_encoder()

    def pool_feats(self, x):
        b, num_tokens, c = x.shape
        h = int(math.sqrt(num_tokens))
        x = x.permute(0, 2, 1).reshape(b, -1, h, h)
        x = F.adaptive_avg_pool2d(x, (12, 12))
        num_tokens = x.shape[2] * x.shape[3]  # Recalculate the number of tokens after pooling
        x = x.reshape(b, c, num_tokens).permute(0, 2, 1)
        return x

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def encode_images_frameCat(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        assert len(image_features) % 5 == 0

        concatenated_features = []
        for i in range(0, len(image_features), 5):
            tensors_to_concat = [image_features[j] for j in range(i, i + 5)]
            concatenated_tensor = torch.cat(tensors_to_concat, dim=-1)
            concatenated_features.append(concatenated_tensor)
        concatenated_features = torch.stack(concatenated_features)
        image_features = concatenated_features

        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels, images, audios
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if (
                past_key_values is not None
                and vision_tower is not None
                and images is not None
                and input_ids.shape[1] == 1
            ):
                target_shape = past_key_values[-1][-1].shape[-2] + 1
                attention_mask = torch.cat(
                    (
                        attention_mask,
                        torch.ones(
                            (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
                            dtype=attention_mask.dtype,
                            device=attention_mask.device,
                        ),
                    ),
                    dim=1,
                )
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            concat_images = torch.cat([image for image in images], dim=0)
            image_features = self.encode_images(concat_images)
            split_sizes = [image.shape[0] for image in images]
            image_features = torch.split(image_features, split_sizes, dim=0)
            image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
        else:
            image_features = self.encode_images(images).to(self.device)

        audio_encoder = self.get_audio_encoder()
        # audio_features = audio_encoder(audios['audios'], audios['lengths'])
        if audios is not None:
            audio_features = audio_encoder(audios["audios"], audios["lengths"])
        else:
            audio_features = None

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(
                0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
            )
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- TODO: double check
        input_ids = [
            cur_input_ids[cur_attention_mask]
            for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
        ]
        labels = [
            cur_labels[cur_attention_mask]
            for cur_labels, cur_attention_mask in zip(labels, attention_mask)
        ]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        cur_audio_idx = 0
        # assert sum([(cur == IMAGE_TOKEN_INDEX).sum() for cur in input_ids]) <= image_features.shape[0]
        # assert sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids]) <= audio_features['inputs_embeds'].shape[0]
        assert (
            sum([(cur == IMAGE_TOKEN_INDEX).sum() for cur in input_ids])
            + sum([(IMAGE_TOKEN_INDEX not in cur) for cur in input_ids])
            == image_features.shape[0]
        )
        assert (
            sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids])
            + sum([(AUDIO_TOKEN_INDEX not in cur) for cur in input_ids])
            == audio_features["inputs_embeds"].shape[0]
        )
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            num_audio_frames = (cur_input_ids == AUDIO_TOKEN_INDEX).sum()
            if num_images == 0 and num_audio_frames == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat(
                    [cur_input_embeds_1, cur_image_features[0:0], cur_audio_features[0:0]], dim=0
                )
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                cur_audio_idx += 1
                continue

            image_audio_token_indices = (
                [-1]
                + torch.where(
                    (cur_input_ids == IMAGE_TOKEN_INDEX) | (cur_input_ids == AUDIO_TOKEN_INDEX)
                )[0].tolist()
                + [cur_input_ids.shape[0]]
            )
            cur_input_ids_noim_noau = []
            cur_labels = labels[batch_idx]
            cur_labels_noim_noau = []
            for i in range(len(image_audio_token_indices) - 1):
                cur_input_ids_noim_noau.append(
                    cur_input_ids[
                        image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]
                    ]
                )
                cur_labels_noim_noau.append(
                    cur_labels[image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]]
                )

            split_sizes = [x.shape[0] for x in cur_labels_noim_noau]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim_noau))
            cur_input_embeds_no_im_no_au = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []
            for i in range(num_images + num_audio_frames + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im_no_au[i])
                cur_new_labels.append(cur_labels_noim_noau[i])
                if i < num_images + num_audio_frames:
                    if cur_input_ids[image_audio_token_indices[i + 1]] == IMAGE_TOKEN_INDEX:
                        cur_image_features = image_features[cur_image_idx]
                        cur_image_idx += 1
                        cur_new_input_embeds.append(cur_image_features)
                        cur_new_labels.append(
                            torch.full(
                                (cur_image_features.shape[0],),
                                IGNORE_INDEX,
                                device=cur_labels.device,
                                dtype=cur_labels.dtype,
                            )
                        )
                    elif cur_input_ids[image_audio_token_indices[i + 1]] == AUDIO_TOKEN_INDEX:
                        cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
                        cur_audio_idx += 1
                        cur_new_input_embeds.append(cur_audio_features)
                        cur_new_labels.append(
                            torch.full(
                                (cur_audio_features.shape[0],),
                                IGNORE_INDEX,
                                device=cur_labels.device,
                                dtype=cur_labels.dtype,
                            )
                        )
                    else:
                        raise ValueError

            if num_images != 0 and num_audio_frames == 0:
                cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
                cur_audio_idx += 1
                cur_new_input_embeds.append(cur_audio_features[0:0])
            elif num_images == 0 and num_audio_frames != 0:
                cur_image_features = image_features[cur_image_idx]
                cur_image_idx += 1
                cur_new_input_embeds.append(cur_image_features[0:0])
            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        assert cur_image_idx == image_features.shape[0]
        assert cur_audio_idx == audio_features["inputs_embeds"].shape[0]
        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full(
            (batch_size, max_len),
            IGNORE_INDEX,
            dtype=new_labels[0].dtype,
            device=new_labels[0].device,
        )
        attention_mask = torch.zeros(
            (batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device
        )
        position_ids = torch.zeros(
            (batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
        )

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, "tokenizer_padding_side", "right") == "left":
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                            cur_new_embed,
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(
                        0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                    )
            else:
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            cur_new_embed,
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(
                        0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                    )

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels