statistics_token_num_patch.py 8.06 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import json
import math
import os
from concurrent.futures import ThreadPoolExecutor, as_completed

import torch
import transformers
from PIL import Image
from tqdm import tqdm

import torchaudio
from vita import conversation as conversation_lib
from vita.config import *
from vita.config import AudioFolder, FolderDict
from vita.config.dataset_config import *
from vita.constants import AUDIO_TOKEN_INDEX, GLOBAL_WEIGHTS_PATH, IGNORE_INDEX, IMAGE_TOKEN_INDEX
from vita.util.data_utils_video_audio import DataArguments, LazySupervisedDataset
from vita.util.data_utils_video_audio_neg_patch import find_closest_aspect_ratio
from vita.util.mm_utils import tokenizer_image_audio_token, tokenizer_image_token

image_token_num = 256
token_thre = 9500
# datasets = NLP + HumanCentric + VideoQA + NaturalQA + VideoCap + OCRCap + NaturalCap

datasets = NaturalCap + OCRCap + VideoCap + NaturalQA
# datasets = VideoQA + HumanCentric + NLP
# datasets = [SGInternvid0]
datasets = [TextSFT, TextSFT2_0]

out_file_name = "debug.json"

parser = transformers.HfArgumentParser((DataArguments))
tokenizer = transformers.AutoTokenizer.from_pretrained(
    f"{GLOBAL_WEIGHTS_PATH}/Mixtral-8x7B_New/mg2hg",
    cache_dir=None,
    model_max_length=8192,
    padding_side="right",
    use_fast=True,
)

long_json = []


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=True):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j)
        for n in range(min_num, max_num + 1)
        for i in range(1, n + 1)
        for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size
    )

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
    if use_thumbnail and blocks != 1:
        blocks += 1
    return blocks


def get_wav_duration(file_path):
    waveform, sample_rate = torchaudio.load(file_path)
    duration = waveform.size(1) / sample_rate
    return duration


def process_item(item, conv, roles, tokenizer):
    source = item["conversations"]
    conv.messages = []
    for j, sentence in enumerate(source):
        role = roles[sentence["from"]]
        assert role == conv.roles[j % 2], f"{source}"
        conv.append_message(role, sentence["value"])
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
    item_token_num = input_ids.shape[0]
    if "image" in item:
        image_file = item["image"]
        if isinstance(image_file, str):
            image_file = [image_file]
        set_id = item["set"]
        if isinstance(set_id, str):
            set_id = [set_id]
        for k, img_file in enumerate(image_file):
            if set_id[k] not in NoPatchSets:
                image_directory = FolderDict[set_id[k]]
                image = Image.open(
                    os.path.join(image_directory, img_file.replace("\\", "/"))
                ).convert("RGB")
                num_patches = dynamic_preprocess(image)
            else:
                num_patches = 1
            item_token_num += num_patches * image_token_num

    total_duration = 0
    if "audio" in item:
        audio_files = item["audio"]
        audio_directory = AudioFolder
        if isinstance(audio_files, str):
            audio_files = [audio_files]
        assert isinstance(audio_files, list)
        for audio_file_name in audio_files:
            audio_file_path = os.path.join(audio_directory, "audio", audio_file_name)
            duration = get_wav_duration(audio_file_path)
            duration = (
                math.ceil(duration) if math.ceil(duration) % 2 == 0 else math.ceil(duration) + 1
            )
            total_duration += duration
        item_token_num += math.ceil(total_duration * 12.5)
    if item_token_num > token_thre:
        print(f"item_token_num: {item_token_num}")
        if len(item["image"]) >= 16:
            print(f"num_patches: {num_patches}")
            print(f"total_duration: {total_duration}")
            long_json.append(item)
            print(item)
    return item_token_num


for dataset in datasets:
    json_file_path = dataset["chat_path"]

    with open(json_file_path, "r", encoding="utf-8") as file:
        data = json.load(file)

    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    len_list = []
    with ThreadPoolExecutor() as executor:
        futures = [executor.submit(process_item, item, conv, roles, tokenizer) for item in data]
        for future in tqdm(as_completed(futures), total=len(futures)):
            len_list.append(future.result())

    assert len(len_list) == len(data)

    distribution = {
        "0-100": 0,
        "100-200": 0,
        "200-300": 0,
        "300-400": 0,
        "400-500": 0,
        "500-600": 0,
        "600-700": 0,
        "700-800": 0,
        "800-900": 0,
        "900-1000": 0,
        "1000-1500": 0,
        "1500-2000": 0,
        "2000-2500": 0,
        "2500-3000": 0,
        "3000-3500": 0,
        "3500-4000": 0,
        "4000-4500": 0,
        "4500-5000": 0,
        "5000-5500": 0,
        "5500-6000": 0,
        "6000-6500": 0,
        "6500-7000": 0,
        "7000-7500": 0,
        "7500-8000": 0,
        "8000-8500": 0,
        "8500-9000": 0,
        "9000-9500": 0,
        "9500-10000": 0,
        ">10000": 0,
    }

    for length in len_list:
        if length <= 100:
            distribution["0-100"] += 1
        elif length <= 200:
            distribution["100-200"] += 1
        elif length <= 300:
            distribution["200-300"] += 1
        elif length <= 400:
            distribution["300-400"] += 1
        elif length <= 500:
            distribution["400-500"] += 1
        elif length <= 600:
            distribution["500-600"] += 1
        elif length <= 700:
            distribution["600-700"] += 1
        elif length <= 800:
            distribution["700-800"] += 1
        elif length <= 900:
            distribution["800-900"] += 1
        elif length <= 1000:
            distribution["900-1000"] += 1
        elif length <= 1500:
            distribution["1000-1500"] += 1
        elif length <= 2000:
            distribution["1500-2000"] += 1
        elif length <= 2500:
            distribution["2000-2500"] += 1
        elif length <= 3000:
            distribution["2500-3000"] += 1
        elif length <= 3500:
            distribution["3000-3500"] += 1
        elif length <= 4000:
            distribution["3500-4000"] += 1
        elif length <= 4500:
            distribution["4000-4500"] += 1
        elif length <= 5000:
            distribution["4500-5000"] += 1
        elif length <= 5500:
            distribution["5000-5500"] += 1
        elif length <= 6000:
            distribution["5500-6000"] += 1
        elif length <= 6500:
            distribution["6000-6500"] += 1
        elif length <= 7000:
            distribution["6500-7000"] += 1
        elif length <= 7500:
            distribution["7000-7500"] += 1
        elif length <= 8000:
            distribution["7500-8000"] += 1
        elif length <= 8500:
            distribution["8000-8500"] += 1
        elif length <= 9000:
            distribution["8500-9000"] += 1
        elif length <= 9500:
            distribution["9000-9500"] += 1
        elif length <= 10000:
            distribution["9500-10000"] += 1
        else:
            distribution[">10000"] += 1

    print(f"Length distribution of {json_file_path}:")
    for key, value in distribution.items():
        print(f"{key}: {value}")

# with open(out_file_name, 'w', encoding='utf-8') as file:
#    json.dump(long_json*10, file, ensure_ascii=False, indent=4)

# print(f"处理完成,大于{token_thre}的已保存到{out_file_name}")