concat_data.py 4.82 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import json
import math
import os
import random

import torch
import transformers
from tqdm import tqdm

import torchaudio
from vita import conversation as conversation_lib
from vita.config import AudioFolder, FolderDict
from vita.config.dataset_config import *
from vita.constants import AUDIO_TOKEN_INDEX, GLOBAL_WEIGHTS_PATH, IGNORE_INDEX, IMAGE_TOKEN_INDEX
from vita.util.data_utils_video_audio import DataArguments, LazySupervisedDataset
from vita.util.mm_utils import tokenizer_image_audio_token, tokenizer_image_token

image_token_num = 256
concat_size = 4500
datasets = [ShareGPT4V]

parser = transformers.HfArgumentParser((DataArguments))
tokenizer = transformers.AutoTokenizer.from_pretrained(
    f"{GLOBAL_WEIGHTS_PATH}/Mixtral-8x7B_New/mg2hg",
    cache_dir=None,
    model_max_length=8192,
    padding_side="right",
    use_fast=True,
)


def get_wav_duration(file_path):
    waveform, sample_rate = torchaudio.load(file_path)
    duration = waveform.size(1) / sample_rate
    return duration


for dataset in datasets:
    input_file_name = dataset["chat_path"]
    base_name, ext = os.path.splitext(input_file_name)
    suffix = f"-concat{concat_size}"
    out_file_name = f"{base_name}{suffix}{ext}"

    with open(input_file_name, "r", encoding="utf-8") as file:
        data = json.load(file)
    random.shuffle(data)
    # data = data[:100]

    # 遍历每条数据
    len_list = []

    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    len_list = []
    # Apply prompt templates
    for item in tqdm(data):
        source = item["conversations"]
        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{source}"
            conv.append_message(role, sentence["value"])
        prompt = conv.get_prompt()

        # import pdb; pdb.set_trace()
        input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
        num_images = (input_ids == IMAGE_TOKEN_INDEX).sum()
        item_token_num = input_ids.shape[0] + num_images * image_token_num

        if "audio" in item:
            audio_files = item["audio"]
            audio_directory = AudioFolder
            # 如果 audio_files 是字符串,将其转换为列表
            if isinstance(audio_files, str):
                audio_files = [audio_files]
            # 如果 audio_files 是列表,处理每个文件
            assert isinstance(audio_files, list)
            total_duration = 0
            for audio_file_name in audio_files:
                audio_file_path = os.path.join(audio_directory, "audio", audio_file_name)
                duration = get_wav_duration(audio_file_path)
                duration = (
                    math.ceil(duration) if math.ceil(duration) % 2 == 0 else math.ceil(duration) + 1
                )
                total_duration += duration
            item_token_num += math.ceil(total_duration * 12.5)
        len_list.append(item_token_num)
    assert len(len_list) == len(data)

    def concat_item(items):
        temp_set_id = []
        temp_conversations = []
        temp_ids = []
        temp_images = []
        temp_audios = []

        for item in items:
            temp_set_id.append(item["set"])
            temp_conversations.extend(item["conversations"])
            if "id" in item:
                temp_ids.append(item["id"])
            if "image" in item:
                temp_images.append(item["image"])
            if "audio" in item:
                audio = item["audio"]
                if type(audio) is not list:
                    audio = [audio]
                temp_audios += audio
        if len(temp_images) > 0:
            merged_item = {
                "set": temp_set_id,
                "id": temp_ids,
                "image": temp_images,
                "conversations": temp_conversations,
            }
        else:
            merged_item = {
                "set": temp_set_id,
                "id": temp_ids,
                "conversations": temp_conversations,
            }
        if len(temp_audios) > 0:
            merged_item["audio"] = temp_audios
        return merged_item

    merged_data = []
    i = 0
    while i < len(data):
        len_token = len_list[i]
        k = 1
        while True:
            if sum(len_list[i : i + k]) > concat_size:
                if k > 1:
                    k -= 1
                break
            if i + k == len(data):
                break
            k += 1
        merged_item = concat_item(data[i : i + k])
        merged_data.append(merged_item)
        #    print(f"i: {i}, k: {k}; len of merged item: {sum(len_list[i:i+k])}")
        i = i + k

    with open(out_file_name, "w", encoding="utf-8") as f:
        json.dump(merged_data, f, ensure_ascii=False, indent=4)

    print(f"save {out_file_name}")