Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ViT_migraphx
Commits
f427ad52
Commit
f427ad52
authored
Jul 10, 2024
by
Rayyyyy
Browse files
Add icon and scnet.
parent
d83e4129
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
13 additions
and
11 deletions
+13
-11
README.md
README.md
+13
-11
icon.png
icon.png
+0
-0
No files found.
README.md
View file @
f427ad52
# ViT
# ViT
## 论文
## 论文
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
-
https://arxiv.org/abs/2010.11929
-
https://arxiv.org/abs/2010.11929
## 模型结构
## 模型结构
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。


## 算法原理
## 算法原理
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:


## 环境配置
## 环境配置
### Docker(方法一)
### Docker(方法一)
```
```
...
@@ -18,19 +20,19 @@ docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.0
...
@@ -18,19 +20,19 @@ docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.0
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it <your IMAGE ID> bash
docker run --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it <your IMAGE ID> bash
```
```
### Dockerfile(方法二)
### Dockerfile(方法二)
```
```
cd vit_migraphx/docker
cd vit_migraphx/docker
docker build --no-cache -t vit_migraphx:test .
docker build --no-cache -t vit_migraphx:test .
docker run --rm --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it vit_migraphx:test bash
docker run --rm --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it vit_migraphx:test bash
```
```
## 数据集
## 数据集
下载推理数据
[
flower_photos.tgz
](
http://113.200.138.88:18080/aidatasets/project-dependency/flower_photos/-/raw/master/flower_photos.tgz
)
下载推理数据
```
wget https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
tar -zxvf flower_photos.tgz
数据结构如下:
数据结构如下:
```
flower_photos
flower_photos
├── daisy
├── daisy
│ ├── 100080576_f52e8ee070_n.jpg
│ ├── 100080576_f52e8ee070_n.jpg
...
@@ -56,7 +58,6 @@ flower_photos
...
@@ -56,7 +58,6 @@ flower_photos
```
```
## 推理
## 推理
### 编译
### 编译
```
```
git clone https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
git clone https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
...
@@ -77,7 +78,6 @@ make
...
@@ -77,7 +78,6 @@ make


## 精度
## 精度
测试数据使用的是
[
flower_photos
](
https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
)
,使用的加速卡是DCU Z100
测试数据使用的是
[
flower_photos
](
https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
)
,使用的加速卡是DCU Z100
| Engine | Model Path| Data | Accuracy(%) |
| Engine | Model Path| Data | Accuracy(%) |
...
@@ -88,13 +88,15 @@ make
...
@@ -88,13 +88,15 @@ make
| MIGraphX | models/model.onnx | sunflowers | 97.4 |
| MIGraphX | models/model.onnx | sunflowers | 97.4 |
| MIGraphX | models/model.onnx | tulips | 94.1 |
| MIGraphX | models/model.onnx | tulips | 94.1 |
## 应用场景
## 应用场景
### 算法类别
### 算法类别
`图像分类`
图像分类
### 热点应用行业
### 热点应用行业
`制造,环境,医疗,气象`
制造,环境,医疗,气象
## 源码仓库及问题反馈
## 源码仓库及问题反馈
-
https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
-
https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
## 参考资料
## 参考资料
-
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
-
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
icon.png
0 → 100644
View file @
f427ad52
64.6 KB
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment