Commit f427ad52 authored by Rayyyyy's avatar Rayyyyy
Browse files

Add icon and scnet.

parent d83e4129
# ViT # ViT
## 论文 ## 论文
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929 - https://arxiv.org/abs/2010.11929
## 模型结构 ## 模型结构
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。 Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。
![img](./docs/vit.png) ![img](./docs/vit.png)
## 算法原理 ## 算法原理
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征: 图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:
![img](./docs/attention.png) ![img](./docs/attention.png)
## 环境配置 ## 环境配置
### Docker(方法一) ### Docker(方法一)
``` ```
...@@ -18,19 +20,19 @@ docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.0 ...@@ -18,19 +20,19 @@ docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.0
# <your IMAGE ID>用以上拉取的docker的镜像ID替换 # <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it <your IMAGE ID> bash docker run --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it <your IMAGE ID> bash
``` ```
### Dockerfile(方法二) ### Dockerfile(方法二)
``` ```
cd vit_migraphx/docker cd vit_migraphx/docker
docker build --no-cache -t vit_migraphx:test . docker build --no-cache -t vit_migraphx:test .
docker run --rm --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it vit_migraphx:test bash docker run --rm --shm-size 10g --network=host --name=vit_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v path_to_vit_migraphx:/home/vit_migraphx -it vit_migraphx:test bash
``` ```
## 数据集 ## 数据集
下载推理数据[flower_photos.tgz](http://113.200.138.88:18080/aidatasets/project-dependency/flower_photos/-/raw/master/flower_photos.tgz)
下载推理数据
```
wget https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
tar -zxvf flower_photos.tgz
数据结构如下: 数据结构如下:
```
flower_photos flower_photos
├── daisy ├── daisy
│   ├── 100080576_f52e8ee070_n.jpg │   ├── 100080576_f52e8ee070_n.jpg
...@@ -56,7 +58,6 @@ flower_photos ...@@ -56,7 +58,6 @@ flower_photos
``` ```
## 推理 ## 推理
### 编译 ### 编译
``` ```
git clone https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git git clone https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
...@@ -77,7 +78,6 @@ make ...@@ -77,7 +78,6 @@ make
![img](./docs/result.jpg) ![img](./docs/result.jpg)
## 精度 ## 精度
测试数据使用的是[flower_photos](https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz),使用的加速卡是DCU Z100 测试数据使用的是[flower_photos](https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz),使用的加速卡是DCU Z100
| Engine | Model Path| Data | Accuracy(%) | | Engine | Model Path| Data | Accuracy(%) |
...@@ -88,13 +88,15 @@ make ...@@ -88,13 +88,15 @@ make
| MIGraphX | models/model.onnx | sunflowers | 97.4 | | MIGraphX | models/model.onnx | sunflowers | 97.4 |
| MIGraphX | models/model.onnx | tulips | 94.1 | | MIGraphX | models/model.onnx | tulips | 94.1 |
## 应用场景 ## 应用场景
### 算法类别 ### 算法类别
`图像分类` 图像分类
### 热点应用行业 ### 热点应用行业
`制造,环境,医疗,气象` 制造,环境,医疗,气象
## 源码仓库及问题反馈 ## 源码仓库及问题反馈
- https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git - https://developer.hpccube.com/codes/modelzoo/vit_migraphx.git
## 参考资料 ## 参考资料
- https://github.com/WZMIAOMIAO/deep-learning-for-image-processing - https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
icon.png

64.6 KB

Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment