README.md 5.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# VisualGLM-6B
## 模型结构
VisualGLM 模型架构是 ViT + QFormer + ChatGLM,在预训练阶段对 QFormer 和 ViT LoRA 进行训练,在微调阶段对 QFormer 和 ChatGLM LoRA 进行训练,训练目标是自回归损失(根据图像生成正确的文本)和对比损失(输入 ChatGLM 的视觉特征与对应文本的语义特征对齐)


<div align=center>
    <img src="./doc/image.png"/>
</div>

## 算法原理
VisualGLM-6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM-6B,具有 62 亿参数;图像部分通过训练 BLIP2-Qformer 构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。
VisualGLM-6B 由 SwissArmyTransformer(简称sat) 库训练,这是一个支持Transformer灵活修改、训练的工具库,支持Lora、P-tuning等参数高效微调方法。本项目提供了符合用户习惯的huggingface接口,也提供了基于sat的接口。

结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4量化级别下最低只需6.3G显存)。

## 环境配置
### Docker(方法一)

在光源可拉取推理的docker镜像,拉取方式如下:
```
wangsen's avatar
wangsen committed
21
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:visualglm-6b_pytorch-latest 
22
docker run -it -v /path/your_data/:/path/your_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
23
24
25
26
27
```
### Dockerfile(方法二)
此处提供dockerfile的使用方法
```
docker build --no-cache -t xxx:latest .
28
docker run -it -v /path/your_data/:/path/your_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
```

## 推理
使用pip安装依赖
```
pip install -i https://mirrors.aliyun.com/pypi/simple/ -r requirements.txt
```
此时默认会安装deepspeed库(支持sat库训练),此库对于模型推理并非必要,同时部分Windows环境安装此库时会遇到问题。 如果想绕过deepspeed安装,我们可以将命令改为
```
pip install -i https://mirrors.aliyun.com/pypi/simple/ -r requirements_wo_ds.txt
pip install -i https://mirrors.aliyun.com/pypi/simple/ --no-deps "SwissArmyTransformer>=0.4.4"
```

使用Huggingface transformers库调用模型,可以通过如下代码(其中图像路径为本地路径,模型路径为THUDM/visulglm-6b):
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
image_path = "your image path"
response, history = model.chat(tokenizer, image_path, "描述这张图片。", history=[])
print(response)
response, history = model.chat(tokenizer, image_path, "这张图片可能是在什么场所拍摄的?", history=history)
print(response)
```
得到返回值
```
Specify both input_ids and inputs_embeds at the same time, will use inputs_embeds
这张照片中,一位女士坐在沙发上使用笔记本电脑和鼠标。她似乎正在浏览网页或工作。她的姿势表明她在放松、享受或专注于她的工作。背景中的瓶子可能暗示着饮料或其他日常用品的存在。椅子和沙发的布置也表明这是一个舒适的环境,适合休息或进行轻松的工作活动。
考虑到照片的背景和场景设置,可以推断出这个场景是一个舒适的环境中拍摄的照片,例如家庭住宅或休闲空间。这位女士坐在一张沙发上,周围有瓶子和其他物品,这表明这个地方可能有一些日常用品或装饰。这种布置可能会鼓励人们放松身心并享受他们的日常活动,比如观看电影、阅读书籍或者与亲朋好友聊天。
```
命令行 Demo
```
python cli_demo_hf.py 
```
程序会自动下载sat模型,并在命令行中进行交互式的对话,输入指示并回车即可生成回复,输入 clear 可以清空对话历史,输入 stop 终止程序。

API部署

首先需要安装额外的依赖 pip install fastapi uvicorn,然后运行仓库中的 api.py:

```
python api.py
```
程序会自动下载 sat 模型,默认部署在本地的 8080 端口,通过 POST 方法进行调用。下面是用curl请求的例子,一般而言可以也可以使用代码方法进行POST。

```
echo "{\"image\":\"$(base64 path/to/example.jpg)\",\"text\":\"描述这张图片\",\"history\":[]}" > temp.json
curl -X POST -H "Content-Type: application/json" -d @temp.json http://127.0.0.1:8080
```

得到的返回值为

```
{"result":"这张照片中,一个年轻女子坐在沙发上,手里拿着笔记本电脑。她可能正在工作或学习,或者只是放松和享受时间。","history":[["描述这张图片","这张照片中,一个年轻女子坐在沙发上,手里拿着笔记本电脑。她可能正在工作或学习,或者只是放松和享受时间。"]],"status":200,"time":"2024-01-22 11:16:35"}
```
### 精度

## 应用场景
### 算法类别
多模态对话
### 热点应用行业
## 源码仓库及问题反馈
- 此处填本项目gitlab地址
## 参考资料
- https://github.com/THUDM/VisualGLM-6B?tab=readme-ov-file
James Tharpe's avatar
James Tharpe committed
94