web_demo.py 5.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python

import gradio as gr
from PIL import Image
import os
import json
from model import is_chinese, get_infer_setting, generate_input, chat
import torch

def generate_text_with_image(input_text, image, history=[], request_data=dict(), is_zh=True):
    input_para = {
        "max_length": 2048,
        "min_length": 50,
        "temperature": 0.8,
        "top_p": 0.4,
        "top_k": 100,
        "repetition_penalty": 1.2
    }
    input_para.update(request_data)

    input_data = generate_input(input_text, image, history, input_para, image_is_encoded=False)
    input_image, gen_kwargs =  input_data['input_image'], input_data['gen_kwargs']
    with torch.no_grad():
        answer, history, _ = chat(None, model, tokenizer, input_text, history=history, image=input_image, \
                            max_length=gen_kwargs['max_length'], top_p=gen_kwargs['top_p'], \
                            top_k = gen_kwargs['top_k'], temperature=gen_kwargs['temperature'], english=not is_zh)
    return answer


def request_model(input_text, temperature, top_p, image_prompt, result_previous):
    result_text = [(ele[0], ele[1]) for ele in result_previous]
    for i in range(len(result_text)-1, -1, -1):
        if result_text[i][0] == "" or result_text[i][1] == "":
            del result_text[i]
    print(f"history {result_text}")

    is_zh = is_chinese(input_text)
    if image_prompt is None:
        if is_zh:
            result_text.append((input_text, '图片为空!请上传图片并重试。'))
        else:
            result_text.append((input_text, 'Image empty! Please upload a image and retry.'))
        return input_text, result_text
    elif input_text == "":
        result_text.append((input_text, 'Text empty! Please enter text and retry.'))
        return "", result_text                

    request_para = {"temperature": temperature, "top_p": top_p}
    image = Image.open(image_prompt)
    try:
        answer = generate_text_with_image(input_text, image, result_text.copy(), request_para, is_zh)
    except Exception as e:
        print(f"error: {e}")
        if is_zh:
            result_text.append((input_text, '超时!请稍等几分钟再重试。'))
        else:
            result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
        return "", result_text

    result_text.append((input_text, answer))
    print(result_text)
    return "", result_text


DESCRIPTION = '''# <a href="https://github.com/THUDM/VisualGLM-6B">VisualGLM</a>'''

MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
MAINTENANCE_NOTICE2 = '提示1: 如果应用报了“Something went wrong, connection error out”的错误,请关闭代理并重试。\n提示2: 如果你上传了很大的图片,比如10MB大小,那将需要一些时间来上传和处理,请耐心等待。'

NOTES = 'This app is adapted from <a href="https://github.com/THUDM/VisualGLM-6B">https://github.com/THUDM/VisualGLM-6B</a>. It would be recommended to check out the repo if you want to see the detail of our model and training process.'


def clear_fn(value):
    return "", [("", "Hi, What do you want to know about this image?")], None

def clear_fn2(value):
    return [("", "Hi, What do you want to know about this image?")]


def main(args):
    gr.close_all()
    global model, tokenizer
    model, tokenizer = get_infer_setting(gpu_device=0, quant=args.quant)
    
    with gr.Blocks(css='style.css') as demo:
        gr.Markdown(DESCRIPTION)
        with gr.Row():
            with gr.Column(scale=4.5):
                with gr.Group():
                    input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.')
                    with gr.Row():
                        run_button = gr.Button('Generate')
                        clear_button = gr.Button('Clear')

                    image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
                with gr.Row():
                    temperature = gr.Slider(maximum=1, value=0.8, minimum=0, label='Temperature')
                    top_p = gr.Slider(maximum=1, value=0.4, minimum=0, label='Top P')
                with gr.Group():
                    with gr.Row():
                        maintenance_notice = gr.Markdown(MAINTENANCE_NOTICE1)
            with gr.Column(scale=5.5):
                result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")]).style(height=550)

        gr.Markdown(NOTES)

        print(gr.__version__)
        run_button.click(fn=request_model,inputs=[input_text, temperature, top_p, image_prompt, result_text],
                         outputs=[input_text, result_text])
        input_text.submit(fn=request_model,inputs=[input_text, temperature, top_p, image_prompt, result_text],
                         outputs=[input_text, result_text])
        clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
        image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
        image_prompt.clear(fn=clear_fn2, inputs=clear_button, outputs=[result_text])

        print(gr.__version__)

    demo.queue(concurrency_count=10)
    demo.launch(share=args.share)


if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--quant", choices=[8, 4], type=int, default=None)
    parser.add_argument("--share", action="store_true")
    args = parser.parse_args()

129
    main(args)