swin.py 10.1 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# https://github.com/berniwal/swin-transformer-pytorch

import torch
from torch import nn, einsum
import numpy as np
from einops import rearrange, repeat


class CyclicShift(nn.Module):
    def __init__(self, displacement):
        super().__init__()
        self.displacement = displacement

    def forward(self, x):
        return torch.roll(x, shifts=(self.displacement, self.displacement), dims=(1, 2))


class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) + x


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Linear(hidden_dim, dim),
        )

    def forward(self, x):
        return self.net(x)


def create_mask(window_size, displacement, upper_lower, left_right):
    mask = torch.zeros(window_size ** 2, window_size ** 2)

    if upper_lower:
        mask[-displacement * window_size:, :-displacement * window_size] = float('-inf')
        mask[:-displacement * window_size, -displacement * window_size:] = float('-inf')

    if left_right:
        mask = rearrange(mask, '(h1 w1) (h2 w2) -> h1 w1 h2 w2', h1=window_size, h2=window_size)
        mask[:, -displacement:, :, :-displacement] = float('-inf')
        mask[:, :-displacement, :, -displacement:] = float('-inf')
        mask = rearrange(mask, 'h1 w1 h2 w2 -> (h1 w1) (h2 w2)')

    return mask


def get_relative_distances(window_size):
    indices = torch.tensor(np.array([[x, y] for x in range(window_size) for y in range(window_size)]))
    distances = indices[None, :, :] - indices[:, None, :]
    return distances


class WindowAttention(nn.Module):
    def __init__(self, dim, heads, head_dim, shifted, window_size, relative_pos_embedding):
        super().__init__()
        inner_dim = head_dim * heads

        self.heads = heads
        self.scale = head_dim ** -0.5
        self.window_size = window_size
        self.relative_pos_embedding = relative_pos_embedding
        self.shifted = shifted

        if self.shifted:
            displacement = window_size // 2
            self.cyclic_shift = CyclicShift(-displacement)
            self.cyclic_back_shift = CyclicShift(displacement)
            self.upper_lower_mask = nn.Parameter(create_mask(window_size=window_size, displacement=displacement,
                                                             upper_lower=True, left_right=False), requires_grad=False)
            self.left_right_mask = nn.Parameter(create_mask(window_size=window_size, displacement=displacement,
                                                            upper_lower=False, left_right=True), requires_grad=False)

        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

        if self.relative_pos_embedding:
            self.relative_indices = get_relative_distances(window_size) + window_size - 1
            self.pos_embedding = nn.Parameter(torch.randn(2 * window_size - 1, 2 * window_size - 1))
        else:
            self.pos_embedding = nn.Parameter(torch.randn(window_size ** 2, window_size ** 2))

        self.to_out = nn.Linear(inner_dim, dim)

    def forward(self, x):
        if self.shifted:
            x = self.cyclic_shift(x)

        b, n_h, n_w, _, h = *x.shape, self.heads

        qkv = self.to_qkv(x).chunk(3, dim=-1)
        nw_h = n_h // self.window_size
        nw_w = n_w // self.window_size

        q, k, v = map(
            lambda t: rearrange(t, 'b (nw_h w_h) (nw_w w_w) (h d) -> b h (nw_h nw_w) (w_h w_w) d',
                                h=h, w_h=self.window_size, w_w=self.window_size), qkv)

        dots = einsum('b h w i d, b h w j d -> b h w i j', q, k) * self.scale

        if self.relative_pos_embedding:
            dots += self.pos_embedding[self.relative_indices[:, :, 0], self.relative_indices[:, :, 1]]
        else:
            dots += self.pos_embedding

        if self.shifted:
            dots[:, :, -nw_w:] += self.upper_lower_mask
            dots[:, :, nw_w - 1::nw_w] += self.left_right_mask

        attn = dots.softmax(dim=-1)

        out = einsum('b h w i j, b h w j d -> b h w i d', attn, v)
        out = rearrange(out, 'b h (nw_h nw_w) (w_h w_w) d -> b (nw_h w_h) (nw_w w_w) (h d)',
                        h=h, w_h=self.window_size, w_w=self.window_size, nw_h=nw_h, nw_w=nw_w)
        out = self.to_out(out)

        if self.shifted:
            out = self.cyclic_back_shift(out)
        return out


class SwinBlock(nn.Module):
    def __init__(self, dim, heads, head_dim, mlp_dim, shifted, window_size, relative_pos_embedding):
        super().__init__()
        self.attention_block = Residual(PreNorm(dim, WindowAttention(dim=dim,
                                                                     heads=heads,
                                                                     head_dim=head_dim,
                                                                     shifted=shifted,
                                                                     window_size=window_size,
                                                                     relative_pos_embedding=relative_pos_embedding)))
        self.mlp_block = Residual(PreNorm(dim, FeedForward(dim=dim, hidden_dim=mlp_dim)))

    def forward(self, x):
        x = self.attention_block(x)
        x = self.mlp_block(x)
        return x


class PatchMerging(nn.Module):
    def __init__(self, in_channels, out_channels, downscaling_factor):
        super().__init__()
        self.downscaling_factor = downscaling_factor
        self.patch_merge = nn.Unfold(kernel_size=downscaling_factor, stride=downscaling_factor, padding=0)
        self.linear = nn.Linear(in_channels * downscaling_factor ** 2, out_channels)

    def forward(self, x):
        b, c, h, w = x.shape
        new_h, new_w = h // self.downscaling_factor, w // self.downscaling_factor
        x = self.patch_merge(x).view(b, -1, new_h, new_w).permute(0, 2, 3, 1)
        x = self.linear(x)
        return x


class StageModule(nn.Module):
    def __init__(self, in_channels, hidden_dimension, layers, downscaling_factor, num_heads, head_dim, window_size,
                 relative_pos_embedding):
        super().__init__()
        assert layers % 2 == 0, 'Stage layers need to be divisible by 2 for regular and shifted block.'

        self.patch_partition = PatchMerging(in_channels=in_channels, out_channels=hidden_dimension,
                                            downscaling_factor=downscaling_factor)

        self.layers = nn.ModuleList([])
        for _ in range(layers // 2):
            self.layers.append(nn.ModuleList([
                SwinBlock(dim=hidden_dimension, heads=num_heads, head_dim=head_dim, mlp_dim=hidden_dimension * 4,
                          shifted=False, window_size=window_size, relative_pos_embedding=relative_pos_embedding),
                SwinBlock(dim=hidden_dimension, heads=num_heads, head_dim=head_dim, mlp_dim=hidden_dimension * 4,
                          shifted=True, window_size=window_size, relative_pos_embedding=relative_pos_embedding),
            ]))

    def forward(self, x):
        x = self.patch_partition(x)
        for regular_block, shifted_block in self.layers:
            x = regular_block(x)
            x = shifted_block(x)
        return x.permute(0, 3, 1, 2)


class SwinTransformer(nn.Module):
    def __init__(self, *, hidden_dim, layers, heads, channels=3, num_classes=1000, head_dim=32, window_size=7,
                 downscaling_factors=(4, 2, 2, 2), relative_pos_embedding=True):
        super().__init__()

        self.stage1 = StageModule(in_channels=channels, hidden_dimension=hidden_dim, layers=layers[0],
                                  downscaling_factor=downscaling_factors[0], num_heads=heads[0], head_dim=head_dim,
                                  window_size=window_size, relative_pos_embedding=relative_pos_embedding)
        self.stage2 = StageModule(in_channels=hidden_dim, hidden_dimension=hidden_dim * 2, layers=layers[1],
                                  downscaling_factor=downscaling_factors[1], num_heads=heads[1], head_dim=head_dim,
                                  window_size=window_size, relative_pos_embedding=relative_pos_embedding)
        self.stage3 = StageModule(in_channels=hidden_dim * 2, hidden_dimension=hidden_dim * 4, layers=layers[2],
                                  downscaling_factor=downscaling_factors[2], num_heads=heads[2], head_dim=head_dim,
                                  window_size=window_size, relative_pos_embedding=relative_pos_embedding)
        self.stage4 = StageModule(in_channels=hidden_dim * 4, hidden_dimension=hidden_dim * 8, layers=layers[3],
                                  downscaling_factor=downscaling_factors[3], num_heads=heads[3], head_dim=head_dim,
                                  window_size=window_size, relative_pos_embedding=relative_pos_embedding)

        self.mlp_head = nn.Sequential(
            nn.LayerNorm(hidden_dim * 8),
            nn.Linear(hidden_dim * 8, num_classes)
        )

    def forward(self, img):
        x = self.stage1(img)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = x.mean(dim=[2, 3])
        return self.mlp_head(x)


def swin_t(hidden_dim=96, layers=(2, 2, 6, 2), heads=(3, 6, 12, 24), **kwargs):
    return SwinTransformer(hidden_dim=hidden_dim, layers=layers, heads=heads, **kwargs)


def swin_s(hidden_dim=96, layers=(2, 2, 18, 2), heads=(3, 6, 12, 24), **kwargs):
    return SwinTransformer(hidden_dim=hidden_dim, layers=layers, heads=heads, **kwargs)


def swin_b(hidden_dim=128, layers=(2, 2, 18, 2), heads=(4, 8, 16, 32), **kwargs):
    return SwinTransformer(hidden_dim=hidden_dim, layers=layers, heads=heads, **kwargs)


def swin_l(hidden_dim=192, layers=(2, 2, 18, 2), heads=(6, 12, 24, 48), **kwargs):
    return SwinTransformer(hidden_dim=hidden_dim, layers=layers, heads=heads, **kwargs)