CommonUtils.cpp 3.51 KB
Newer Older
lijian6's avatar
lijian6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <numeric>
#include "CommonUtils.h"

std::vector<float> substractMeanNormalize(cv::Mat &src, const float *meanVals, const float *normVals) {
    auto inputTensorSize = src.cols * src.rows * src.channels();
    std::vector<float> inputTensorValues(inputTensorSize);
    size_t numChannels = src.channels();
    size_t imageSize = src.cols * src.rows;

    for (size_t pid = 0; pid < imageSize; pid++) {
        for (size_t ch = 0; ch < numChannels; ++ch) {
            float data = (float) (src.data[pid * numChannels + ch] * normVals[ch] - meanVals[ch] * normVals[ch]);
            inputTensorValues[ch * imageSize + pid] = data;
        }
    }
    return inputTensorValues;
}

std::vector<Ort::AllocatedStringPtr> getInputNames(Ort::Session *session) {
    Ort::AllocatorWithDefaultOptions allocator;
    const size_t numInputNodes = session->GetInputCount();

    std::vector<Ort::AllocatedStringPtr> inputNamesPtr;
    inputNamesPtr.reserve(numInputNodes);
    std::vector<int64_t> input_node_dims;

    // iterate over all input nodes
    for (size_t i = 0; i < numInputNodes; i++) {
        auto inputName = session->GetInputNameAllocated(i, allocator);
        inputNamesPtr.push_back(std::move(inputName));
        /*printf("inputName[%zu] = %s\n", i, inputName.get());

        // print input node types
        auto typeInfo = session->GetInputTypeInfo(i);
        auto tensorInfo = typeInfo.GetTensorTypeAndShapeInfo();

        ONNXTensorElementDataType type = tensorInfo.GetElementType();
        printf("inputType[%zu] = %u\n", i, type);

        // print input shapes/dims
        input_node_dims = tensorInfo.GetShape();
        printf("Input num_dims = %zu\n", input_node_dims.size());
        for (size_t j = 0; j < input_node_dims.size(); j++) {
            printf("Input dim[%zu] = %llu\n",j, input_node_dims[j]);
        }*/
    }
    return inputNamesPtr;
}

std::vector<int64_t> getInputDim(Ort::Session *session)
{
    std::vector<int64_t> input_node_dims;
    auto typeInfo = session->GetInputTypeInfo(0);
    auto tensorInfo = typeInfo.GetTensorTypeAndShapeInfo();
    input_node_dims = tensorInfo.GetShape();

    return input_node_dims;
}

std::vector<Ort::AllocatedStringPtr> getOutputNames(Ort::Session *session) {
    Ort::AllocatorWithDefaultOptions allocator;
    const size_t numOutputNodes = session->GetOutputCount();

    std::vector<Ort::AllocatedStringPtr> outputNamesPtr;
    outputNamesPtr.reserve(numOutputNodes);
    std::vector<int64_t> output_node_dims;

    for (size_t i = 0; i < numOutputNodes; i++) {
        auto outputName = session->GetOutputNameAllocated(i, allocator);
        outputNamesPtr.push_back(std::move(outputName));
        /*printf("outputName[%zu] = %s\n", i, outputName.get());

        // print input node types
        auto type_info = session->GetOutputTypeInfo(i);
        auto tensor_info = type_info.GetTensorTypeAndShapeInfo();

        ONNXTensorElementDataType type = tensor_info.GetElementType();
        printf("outputType[%zu] = %u\n", i, type);

        // print input shapes/dims
        output_node_dims = tensor_info.GetShape();
        printf("output num_dims = %zu\n", output_node_dims.size());
        for (size_t j = 0; j < output_node_dims.size(); j++) {
            printf("output dim[%zu] = %llu\n",j, output_node_dims[j]);
        }*/
    }
    return outputNamesPtr;
}

std::string getSrcImgFilePath(const char *path, const char *imgName) {
    std::string filePath;
    filePath.append(path).append(imgName);
    return filePath;
}