README.md 2.58 KB
Newer Older
dcuai's avatar
dcuai committed
1
# YOLOv7
lijian6's avatar
Update  
lijian6 committed
2
## 论文
Rayyyyy's avatar
Rayyyyy committed
3
`YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors`
lijian6's avatar
Update  
lijian6 committed
4
5
6
7
8
9
10
11
12
13
- https://arxiv.org/pdf/2207.02696.pdf

## 模型结构
YOLOV7是2022年最新出现的一种YOLO系列目标检测模型,该模型的网络结构包括三个部分:input、backbone和head。

<img src="./Doc/YoloV7_model.png" alt="YOLOV7_02" style="zoom:67%;" />

## 算法原理
YOLOv7的作者提出了 Extended-ELAN (E-ELAN)结构。E-ELAN采用了ELAN类似的特征聚合和特征转移流程,仅在计算模块中采用了类似ShuffleNet的分组卷积、扩张模块和混洗模块,最终通过聚合模块融合特征。通过采
用这种方法可以获得更加多样的特征,同时提高参数的计算和利用效率。
lijian6's avatar
lijian6 committed
14

lijian6's avatar
Update  
lijian6 committed
15
<img src="./Doc/YoloV7_suanfa.png" alt="YOLOV7_suanfa" style="zoom:67%;" />
lijian6's avatar
lijian6 committed
16
17

## 环境配置
lijian6's avatar
Update  
lijian6 committed
18
19
20
### Docker(方法一)
拉取镜像:
```plaintext
lijian6's avatar
lijian6 committed
21
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:opencv49_ffmpeg4.2.1_ubuntu20.04-dtk24.04.3
lijian6's avatar
lijian6 committed
22
23
```

lijian6's avatar
Update  
lijian6 committed
24
25
创建并启动容器:
```plaintext
dcuai's avatar
dcuai committed
26
docker run --shm-size 16g --network=host --name=video_migraphx --privileged -v /opt/hyhal:/opt/hyhal:ro --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/video_migraphx:/home/video_migraphx -it <Your Image ID> /bin/bash
lijian6's avatar
Update  
lijian6 committed
27
28
29
30
31
32
33
```

### Dockerfile(方法二)
```
cd ./docker
docker build --no-cache -t video_migraphx:test .

dcuai's avatar
dcuai committed
34
docker run --shm-size 16g --network=host --name=video_migraphx --privileged -v /opt/hyhal:/opt/hyhal:ro --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/video_migraphx:/home/video_migraphx -it <Your Image ID> /bin/bash
lijian6's avatar
Update  
lijian6 committed
35
36
37
38
39
40
41
```

## 数据集
根据提供的视频文件,进行目标检测。

## 推理
### 编译工程
lijian6's avatar
lijian6 committed
42
```
dcuai's avatar
dcuai committed
43
cd /home/video_migraphx
lijian6's avatar
lijian6 committed
44
45
46
47
48
49
mkdir build
cd build
使用CPU解码和解码卡软件帧:
cmake ../ -DUSE_P2P=0
使用解码卡硬件帧:
cmake ../ -DUSE_P2P=1
dcuai's avatar
dcuai committed
50

lijian6's avatar
lijian6 committed
51
52
53
make
```

lijian6's avatar
Update  
lijian6 committed
54
### 运行示例
lijian6's avatar
lijian6 committed
55
56
```
./Video_MIGraphX
57
根据提示选择要运行的示例程序,运行解码卡示例需要提前安装并初始化解码卡。比如执行:
lijian6's avatar
Update  
lijian6 committed
58

dcuai's avatar
dcuai committed
59
60
如在CPU端解码,运行yolov7-tiny示例:
./Video_MIGraphX --cpu --net=2
lijian6's avatar
lijian6 committed
61
```
lijian6's avatar
Update  
lijian6 committed
62
注意:如果需要运行解码卡硬件帧示例,需要提前安装dma-buffer驱动
lijian6's avatar
lijian6 committed
63

lijian6's avatar
Update  
lijian6 committed
64
## result
lijian6's avatar
Update  
lijian6 committed
65
66

![img](./Doc/image.gif)
lijian6's avatar
lijian6 committed
67

lijian6's avatar
Update  
lijian6 committed
68
69
### 精度

lijian6's avatar
lijian6 committed
70

lijian6's avatar
Update  
lijian6 committed
71
72
## 应用场景
### 算法类别
Rayyyyy's avatar
Rayyyyy committed
73
目标检测
lijian6's avatar
Update  
lijian6 committed
74
75

### 热点应用行业
Rayyyyy's avatar
Rayyyyy committed
76
监控,交通,教育,化工
lijian6's avatar
lijian6 committed
77

lijian6's avatar
lijian6 committed
78
## 源码仓库及问题反馈
chenzk's avatar
chenzk committed
79
- https://developer.sourcefind.cn/codes/modelzoo/video_migraphx.git
lijian6's avatar
Update  
lijian6 committed
80
81

## 参考资料
Rayyyyy's avatar
Rayyyyy committed
82
- https://github.com/WongKinYiu/yolov7