README.md 2.56 KB
Newer Older
lijian6's avatar
Update  
lijian6 committed
1
# YoloV7
lijian6's avatar
lijian6 committed
2

lijian6's avatar
Update  
lijian6 committed
3
## 论文
lijian6's avatar
lijian6 committed
4

lijian6's avatar
Update  
lijian6 committed
5
6
7
8
9
10
11
12
13
14
15
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

- https://arxiv.org/pdf/2207.02696.pdf

## 模型结构

YOLOV7是2022年最新出现的一种YOLO系列目标检测模型,该模型的网络结构包括三个部分:input、backbone和head。

<img src="./Doc/YoloV7_model.png" alt="YOLOV7_02" style="zoom:67%;" />

## 算法原理
lijian6's avatar
lijian6 committed
16

lijian6's avatar
Update  
lijian6 committed
17
18
YOLOv7的作者提出了 Extended-ELAN (E-ELAN)结构。E-ELAN采用了ELAN类似的特征聚合和特征转移流程,仅在计算模块中采用了类似ShuffleNet的分组卷积、扩张模块和混洗模块,最终通过聚合模块融合特征。通过采
用这种方法可以获得更加多样的特征,同时提高参数的计算和利用效率。
lijian6's avatar
lijian6 committed
19

lijian6's avatar
Update  
lijian6 committed
20
<img src="./Doc/YoloV7_suanfa.png" alt="YOLOV7_suanfa" style="zoom:67%;" />
lijian6's avatar
lijian6 committed
21
22

## 环境配置
lijian6's avatar
Update  
lijian6 committed
23
### Docker(方法一)
lijian6's avatar
lijian6 committed
24

lijian6's avatar
Update  
lijian6 committed
25
拉取镜像:
lijian6's avatar
lijian6 committed
26

lijian6's avatar
Update  
lijian6 committed
27
```plaintext
lijian6's avatar
lijian6 committed
28
29
30
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:decode-ffmpeg-dtk23.04
```

lijian6's avatar
Update  
lijian6 committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
创建并启动容器:

```plaintext
docker run --shm-size 16g --network=host --name=video_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/video_migraphx:/home/video_migraphx -it <Your Image ID> /bin/bash
```

### Dockerfile(方法二)

```
cd ./docker
docker build --no-cache -t video_migraphx:test .

docker run --shm-size 16g --network=host --name=video_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/video_migraphx:/home/video_migraphx -it <Your Image ID> /bin/bash
```

## 数据集
根据提供的视频文件,进行目标检测。

## 推理
lijian6's avatar
lijian6 committed
50

lijian6's avatar
Update  
lijian6 committed
51
### 编译工程
lijian6's avatar
lijian6 committed
52
```
lijian6's avatar
Update  
lijian6 committed
53
git clone https://developer.hpccube.com/codes/modelzoo/video_migraphx.git
lijian6's avatar
lijian6 committed
54
55
56
57
58
59
60
61
62
63
cd video_migraphx
mkdir build
cd build
使用CPU解码和解码卡软件帧:
cmake ../ -DUSE_P2P=0
使用解码卡硬件帧:
cmake ../ -DUSE_P2P=1
make
```

lijian6's avatar
Update  
lijian6 committed
64
### 运行示例
lijian6's avatar
lijian6 committed
65
66
```
./Video_MIGraphX
67
根据提示选择要运行的示例程序,运行解码卡示例需要提前安装并初始化解码卡。比如执行:
lijian6's avatar
Update  
lijian6 committed
68
69

如在CPU端解码,运行yolov3-tiny示例:
lijian6's avatar
lijian6 committed
70
71
./Video_MIGraphX --cpu --net=0
```
lijian6's avatar
Update  
lijian6 committed
72
注意:如果需要运行解码卡硬件帧示例,需要提前安装dma-buffer驱动
lijian6's avatar
lijian6 committed
73

lijian6's avatar
Update  
lijian6 committed
74
75
## result

lijian6's avatar
lijian6 committed
76

lijian6's avatar
Update  
lijian6 committed
77
78
### 精度

lijian6's avatar
lijian6 committed
79

lijian6's avatar
Update  
lijian6 committed
80
81
82
83
84
85
86
87
88
## 应用场景

### 算法类别

`目标检测`

### 热点应用行业

`监控`,`交通`,`教育`,`化工`
lijian6's avatar
lijian6 committed
89

lijian6's avatar
lijian6 committed
90
## 源码仓库及问题反馈
lijian6's avatar
lijian6 committed
91

lijian6's avatar
Update  
lijian6 committed
92
93
94
95
96
https://developer.hpccube.com/codes/modelzoo/video_migraphx.git

## 参考资料

https://github.com/WongKinYiu/yolov7
lijian6's avatar
lijian6 committed
97