SSD.cpp 15 KB
Newer Older
lijian6's avatar
lijian6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <Sample.h>
#include <SimpleLog.h>
#include <Filesystem.h>
#include <DetectorSSD.h>
#include <sys/time.h>
#include <Decoder.h>
#include <Queuethread.h>

using namespace cv;
using namespace std;
using namespace cv::dnn;
using namespace migraphx;
using namespace migraphxSamples;

static void DecoderThreadFunc(Queue* queue)
{
    int ret, end = 0;
    int frame_cnt = 0;
    Queue* que = queue;
    Decoder decoder(que->device);
    InitializationParameterOfDecoder initParamOfDecoderSSD;
    #ifndef DMA
    initParamOfDecoderSSD.src_filename = "../Resource/Images/Mean.mp4";
    if( que->device == _HW) {
lijian6's avatar
lijian6 committed
25
        initParamOfDecoderSSD.str_devid[0] = {0};
lijian6's avatar
lijian6 committed
26
27
28
29
30
31
32
33
34
35
        initParamOfDecoderSSD.xcoder_params = "out=hw";
        initParamOfDecoderSSD.dec_name = "h264_ni_quadra_dec";
        initParamOfDecoderSSD.filters_descr = "ni_quadra_scale=640:480:format=bgrp,hwdownload,format=bgrp";
    } else if (que->device == _HW_DMA) {
        LOG_ERROR(stdout, "Error program param or cmake param, not USE_P2P can`t set '--dma'!\n");
        que->finish();
        return;
    }
    #else
    if( que->device == _HW_DMA) {
lijian6's avatar
lijian6 committed
36
        initParamOfDecoderSSD.str_devid[0] = {0};
lijian6's avatar
lijian6 committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        initParamOfDecoderSSD.xcoder_params = "out=hw";
        initParamOfDecoderSSD.dec_name = "h264_ni_quadra_dec";
        initParamOfDecoderSSD.filters_descr = "ni_quadra_scale=640:480:format=rgba:is_p2p=1";
        initParamOfDecoderSSD.src_filename = "../Resource/Images/cr7_1920x1080.h264";
    } else {
        LOG_ERROR(stdout, "Error program param or cmake param, USE_P2P need set '--dma'!\n");
        que->finish();
        return;
    }
    #endif
    ret = decoder.DecoderInit(initParamOfDecoderSSD);
    if (ret == -1)
    {
        que->finish();
        return;
    }
    while(true)
    {
        if (av_read_frame(decoder.fmt_ctx, decoder.pkt) < 0)
        {
	        if(end == 2)
	        {
                que->DecodeEnd = true;
                break;
            }
            end = 1;
        }
        if (decoder.pkt->stream_index == decoder.video_stream_idx) {
            if(!end) {
                ret = avcodec_send_packet(decoder.video_dec_ctx, decoder.pkt);
            } else {
                ret = avcodec_send_packet(decoder.video_dec_ctx, NULL);
            }
            if (ret < 0 && ret != AVERROR_EOF) {
                fprintf(stderr, "Error submitting a packet for decoding\n");
                que->DecodeEnd = true;
                break;
            }
            while (ret >= 0 || end == 1)
            {
                ret = avcodec_receive_frame(decoder.video_dec_ctx, decoder.frame);
                if (ret == AVERROR(EAGAIN)) {
                    break;
                } else if (ret == AVERROR_EOF ) {
                    end = 2;
                    break;
                } else if (ret < 0) {
                    av_log(NULL, AV_LOG_ERROR, "Error while receiving a frame from the decoder\n");
                    que->finish();
                    return;
                }
                decoder.frame->pts = decoder.frame->best_effort_timestamp;
                frame_cnt++;

                if (que->device == CPU)
                {
                    cv::Mat srcImage = cv::Mat::zeros(decoder.frame->height*3/2, decoder.frame->width, CV_8UC1);
                    memcpy(srcImage.data,						     (unsigned char*)decoder.frame->data[0], decoder.frame->width * decoder.frame->height);
                    memcpy(srcImage.data + decoder.frame->width * decoder.frame->height,     (unsigned char*)decoder.frame->data[1], decoder.frame->width * decoder.frame->height/4);
                    memcpy(srcImage.data + decoder.frame->width * decoder.frame->height*5/4, (unsigned char*)decoder.frame->data[2], decoder.frame->width * decoder.frame->height/4);
                    cvtColor(srcImage, srcImage, COLOR_YUV420p2RGB);
                    que->enQueue(srcImage);
                }
                if (que->device == _HW || que->device == _HW_DMA)
                {
                    if (av_buffersrc_add_frame_flags(decoder.buffersrc_ctx, decoder.frame, AV_BUFFERSRC_FLAG_KEEP_REF) < 0) {
                        av_log(NULL, AV_LOG_ERROR, "Error while feeding the filtergraph\n");
                        break;
                    }
                    while (1)
                    {
                        ret = av_buffersink_get_frame(decoder.buffersink_ctx, decoder.filt_frame);
                       if (ret == AVERROR(EAGAIN))
                       {
                           break;
                       }
                       else if(ret == AVERROR_EOF)
                       {
                           end = 2;
                           break;
                       }
                       if (ret < 0)
                       {
                           que->finish();
                           return;
                       }

                       #ifndef DMA
                       if (que->device == _HW)
                       {
                           cv::Mat srcImage;
                           switch (decoder.filt_frame->format)
                           {
                               case AV_PIX_FMT_BGRP:
                               {
                                   srcImage = cv::Mat::zeros(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC3);
                                   cv::Mat mat_r = cv::Mat(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC1, (unsigned char*)decoder.filt_frame->data[0]);
                                   cv::Mat mat_g = cv::Mat(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC1, (unsigned char*)decoder.filt_frame->data[1]);
                                   cv::Mat mat_b = cv::Mat(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC1, (unsigned char*)decoder.filt_frame->data[2]);
                                   cv::Mat Channels[3]{mat_r, mat_g, mat_b};
                                   cv::merge(Channels, 3, srcImage);
                                   break;
                               }
                               case AV_PIX_FMT_YUV420P:
                               {
                                   srcImage = cv::Mat::zeros(decoder.filt_frame->height*3/2, decoder.filt_frame->width, CV_8UC1);
                                   memcpy(srcImage.data,							       (unsigned char*)decoder.filt_frame->data[0], decoder.filt_frame->width * decoder.filt_frame->height);
                                   memcpy(srcImage.data + decoder.filt_frame->width * decoder.filt_frame->height,     (unsigned char*)decoder.filt_frame->data[1], decoder.filt_frame->width * decoder.filt_frame->height/4);
                                   memcpy(srcImage.data + decoder.filt_frame->width * decoder.filt_frame->height*5/4, (unsigned char*)decoder.filt_frame->data[2], decoder.filt_frame->width * decoder.filt_frame->height/4);
                                   cvtColor(srcImage, srcImage, COLOR_YUV420p2RGB);
                                   break;
                               }
                               case AV_PIX_FMT_RGBA:
                               {
                                   srcImage = cv::Mat::zeros(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC4);
                                   memcpy(srcImage.data, (unsigned char*)decoder.filt_frame->data[0], decoder.filt_frame->width * decoder.filt_frame->height * 4);
                                   cvtColor(srcImage, srcImage, COLOR_BGRA2RGB);
                                   break;
                               }
                               default:
                                   break;
                           }
                           que->enQueue(srcImage);
                           av_frame_unref(decoder.filt_frame);
                       }
                       #else
                       if (que->device == _HW_DMA)
                       {
                           DCU_Frame dcu_frame;
                           AVHWFramesContext *hwfc  = (AVHWFramesContext *)decoder.filt_frame->hw_frames_ctx->data;
                           switch (hwfc->sw_format)
                           {
                               case AV_PIX_FMT_BGRP:
                               {
                                   dcu_frame.format = AV_PIX_FMT_BGRP;
                                   dcu_frame.data_len = decoder.filt_frame->width * decoder.filt_frame->height * 3;
                                   dcu_frame.srcImage = cv::Mat::zeros(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC3);
                                   break;
                               }
                               case AV_PIX_FMT_YUV420P:
                               {
                                   dcu_frame.format = AV_PIX_FMT_YUV420P;
                                   dcu_frame.data_len = decoder.filt_frame->width * decoder.filt_frame->height * 3 / 2;
                                   dcu_frame.srcImage = cv::Mat::zeros(decoder.filt_frame->height*3/2, decoder.filt_frame->width, CV_8UC1);
                                   break;
                               }
                               case AV_PIX_FMT_RGBA:
                               {
                                   dcu_frame.format = AV_PIX_FMT_RGBA;
                                   dcu_frame.data_len = decoder.filt_frame->width * decoder.filt_frame->height * 4;
                                   dcu_frame.srcImage = cv::Mat::zeros(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC4);
                                   break;
                               }
                               default:
                                   break;
                           }

                           dcu_frame.width = decoder.filt_frame->width;
                           dcu_frame.height = decoder.filt_frame->height;
                           hipMalloc((void**)&(dcu_frame.dcu_data), dcu_frame.data_len * sizeof(unsigned char));
                           ret = decoder.retrieve_filter_frame(dcu_frame, decoder.filt_frame);
                           if (ret)
                               av_log(NULL, AV_LOG_ERROR, "Error while retrieve_filter_frame with p2p.\n");
                           if(dcu_frame.format == AV_PIX_FMT_BGRP)
                           {
                               cv::Mat mat_b = cv::Mat(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC1, (unsigned char*)dcu_frame.srcImage.data);
                               cv::Mat mat_g = cv::Mat(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC1, (unsigned char*)(dcu_frame.srcImage.data + decoder.filt_frame->height * decoder.filt_frame->width));
                               cv::Mat mat_r = cv::Mat(decoder.filt_frame->height, decoder.filt_frame->width, CV_8UC1, (unsigned char*)(dcu_frame.srcImage.data + decoder.filt_frame->height * decoder.filt_frame->width * 2));
                               cv::Mat Channels[3]{mat_r, mat_g, mat_b};
                               cv::merge(Channels, 3, dcu_frame.srcImage);
                           }
                           if(dcu_frame.format == AV_PIX_FMT_YUV420P)
                               cvtColor(dcu_frame.srcImage, dcu_frame.srcImage, COLOR_YUV420p2RGB);
                           if(dcu_frame.format == AV_PIX_FMT_RGBA)
                               cvtColor(dcu_frame.srcImage, dcu_frame.srcImage, COLOR_BGRA2RGB);

                           queue->enQueue(dcu_frame);
                           av_frame_unref(decoder.filt_frame);
                       }
                       #endif
                   }
               }
               av_frame_unref(decoder.frame);
           }
       }
       av_packet_unref(decoder.pkt);
    }
    LOG_INFO(stdout, "Decoder: ####### frame count: %d\n", frame_cnt);
    que->finish();
}

static void DetectorThreadFunc(Queue* que)
{
    Queue* queue = que;
    // DetectorSSD Init
    DetectorSSD detector;
    InitializationParameterOfDetector initParamOfDetectorSSD;
    initParamOfDetectorSSD.parentPath = "";
    initParamOfDetectorSSD.configFilePath = CONFIG_FILE;
    initParamOfDetectorSSD.logName = "";
    ErrorCode errorCode=detector.Initialize(initParamOfDetectorSSD);
    if(errorCode!=SUCCESS)
    {
	LOG_ERROR(stdout, "fail to initialize detector!\n");
	exit(-1);
    }
    LOG_INFO(stdout, "succeed to initialize detector\n");

    int frame_cnt = 0;
    double start_time = getTickCount();
    while (!queue->DecodeEnd) {
        #ifdef DMA
        DCU_Frame dcu_frame;
        queue->deQueue(&dcu_frame);
        if(dcu_frame.srcImage.empty()) {
            continue;
        }
        #else
        cv::Mat InferImage;
        queue->deQueue(&InferImage);
        if (InferImage.empty()) {
            continue;
        }
        #endif

        // detect
        std::vector<ResultOfDetection> predictions;
        double time1 = getTickCount();
        #ifdef DMA
        detector.Detect(dcu_frame, predictions);
        #else
        detector.Detect(InferImage, predictions);
        #endif
        double time2 = getTickCount();
        double elapsedTime = (time2 - time1)*1000 / getTickFrequency();
        LOG_INFO(stdout, "inference time:%f ms\n", elapsedTime);
        frame_cnt++;
        #ifdef DMA
        hipFree(dcu_frame.dcu_data);
        #endif

        // process result
        LOG_INFO(stdout,"////////////////Detection Results////////////////\n");
        for( int i = 0; i < predictions.size(); ++i)
        {
            ResultOfDetection result = predictions[i];
            #ifdef DMA
            cv::rectangle(dcu_frame.srcImage, result.boundingBox, Scalar(0,255,255),2);
            cv::putText(dcu_frame.srcImage, result.className, cv::Point(result.boundingBox.x, result.boundingBox.y-20), cv::FONT_HERSHEY_PLAIN, 2.0, Scalar(0, 0, 255), 2);
            #else
            cv::rectangle(InferImage, result.boundingBox, Scalar(0,255,255),2);
            cv::putText(InferImage, result.className, cv::Point(result.boundingBox.x, result.boundingBox.y-20), cv::FONT_HERSHEY_PLAIN, 2.0, Scalar(0, 0, 255), 2);
            #endif

            LOG_INFO(stdout,"box:%d %d %d %d,label:%d,confidence:%f\n",result.boundingBox.x,
            result.boundingBox.y,result.boundingBox.width,result.boundingBox.height,result.classID,result.confidence);
        }
        // X11 display can`t support in docker.
        /*namedWindow("video", WINDOW_NORMAL | WINDOW_KEEPRATIO);
        #ifdef DMA
        imshow("video", dcu_frame.srcImage);
        #else
        imshow("video", InferImage);
        #endif
        if (waitKey(10) == 'q') {
            break;
        }*/
    }
    #ifdef DMA
    hipFree(detector.preprocess_Image);
    #endif
    double end_time = getTickCount();
    fprintf(stdout, "Finish ####### frame_cnt: %d, Inference fps: %.2f, all time: %.2f ms\n", frame_cnt, float(frame_cnt/((end_time - start_time)/getTickFrequency())), (end_time - start_time)/getTickFrequency()*1000);
    queue->finish();
}


void Sample_DetectorSSD(int device)
{
    Queue* queue = new Queue(1);
    queue->device = device;

    std::thread ThreadDecoder(DecoderThreadFunc, queue);
    std::thread ThreadDetector(DetectorThreadFunc, queue);

    ThreadDecoder.join();
    ThreadDetector.join();

    delete queue;
    queue = NULL;
    return;
}