README.md 4.94 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
# VGG16
renzhc's avatar
renzhc committed
2

sunxx1's avatar
sunxx1 committed
3
## 论文
renzhc's avatar
renzhc committed
4

Rayyyyy's avatar
Rayyyyy committed
5
`VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION`
renzhc's avatar
renzhc committed
6

sunxx1's avatar
sunxx1 committed
7
8
- https://arxiv.org/abs/1409.1556

sunxx1's avatar
sunxx1 committed
9
## 模型结构
renzhc's avatar
renzhc committed
10

sunxx1's avatar
sunxx1 committed
11
VGG模型是2014年ILSVRC竞赛的第二名,第一名是GoogLeNet。但是VGG模型在多个迁移学习任务中的表现要优于GoogLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。
sunxx1's avatar
sunxx1 committed
12

sunxx1's avatar
sunxx1 committed
13
14
![20231124132639](./images/20231124132639.png)

sunxx1's avatar
sunxx1 committed
15
## 算法原理
renzhc's avatar
renzhc committed
16

sunxx1's avatar
sunxx1 committed
17
VGG16共有16个层,是一个相当深的卷积神经网络。VGG各种级别的结构都采用了5段卷积,每一段有一个或多个卷积层。
sunxx1's avatar
sunxx1 committed
18

sunxx1's avatar
sunxx1 committed
19
![20231124132925](./images/20231124132925.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
renzhc's avatar
renzhc committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
24

renzhc's avatar
renzhc committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
推荐使用docker方式运行,拉取提供的docker镜像

```shell
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
```

基于拉取的镜像创建容器

```shell
# <your IMAGE ID or NAME>用以上拉取的docker的镜像ID或名称替换
docker run -it --name=vgg16-mmcv --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
```

克隆并安装git仓库,安装相关依赖

```python
chenzk's avatar
chenzk committed
41
git clone --recursive http://developer.sourcefind.cn/codes/modelzoo/vgg16_mmcv.git
renzhc's avatar
renzhc committed
42
43
cd vgg16_mmcv/mmpretrain-mmcv
pip install -e .
sunxx1's avatar
sunxx1 committed
44
45
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
46

sunxx1's avatar
sunxx1 committed
47
### Dockerfile(方法二)
renzhc's avatar
renzhc committed
48
49

```bash
sunxx1's avatar
sunxx1 committed
50
51
cd vgg16_mmcv/docker
docker build --no-cache -t vgg16_mmcv:latest .
renzhc's avatar
renzhc committed
52
53
54
55
docker run -it --name=vgg16 --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
pip install -e .
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:
# pip install -r requirements.txt
sunxx1's avatar
sunxx1 committed
56
57
58
```

### Anaconda(方法三)
renzhc's avatar
renzhc committed
59

chenzk's avatar
chenzk committed
60
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.sourcefind.cn/tool/
renzhc's avatar
renzhc committed
61

sunxx1's avatar
sunxx1 committed
62
```plaintext
renzhc's avatar
renzhc committed
63
64
65
66
67
DTK驱动: DTK-24.04.1
python==3.10
torch==2.1.0
torchvision==0.16.0+das1.1.git7d45932.abi1.dtk2404.torch2.1
mmcv==2.0.1+das1.1.gite58da25.abi1.dtk2404.torch2.1.0
sunxx1's avatar
sunxx1 committed
68
69
70
71
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
renzhc's avatar
renzhc committed
72

sunxx1's avatar
sunxx1 committed
73
74
75
76
```plaintext
pip install -r requirements.txt
```

sunxx1's avatar
sunxx1 committed
77
## 数据集
sunxx1's avatar
sunxx1 committed
78

renzhc's avatar
renzhc committed
79
80
### ImageNet

chenzk's avatar
chenzk committed
81
在本项目中可以使用ImageNet数据集。ImageNet数据集官方下载地址:https://image-net.org,下载其中的ILSVRC2012_img_train.tar和ILSVRC2012_img_val.tar,并按照以下方式解包
renzhc's avatar
renzhc committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

```bash
cd mmpretrain-mmcv/data/imagenet
mkdir train && cd train
tar -xvf ILSVRC2012_img_train.tar
```

解包后是1000个tar文件,每个tar对应了一个类别,分别解包至对应文件夹,可利用如下shell脚本。

```bash
for tarfile in *.tar; do
    dirname="${tarfile%.tar}"
    mkdir "$dirname"
    tar -xvf "$tarfile" -C "$dirname"
done
```

renzhc's avatar
renzhc committed
99
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于ImageNet,目录结构如下
sunxx1's avatar
sunxx1 committed
100

sunxx1's avatar
sunxx1 committed
101
```
renzhc's avatar
renzhc committed
102
103
104
105
106
107
108
109
110
data
└── imagenet
    ├── train
    │   ├── n01440764
    │   │   ├── n01440764_10026.JPEG
    │   │   ├── n01440764_10027.JPEG
    ├──val
    │   ├── n01440764 
    │   │   ├── ILSVRC2012_val_00000293.JPEG
sunxx1's avatar
sunxx1 committed
111
```
sunxx1's avatar
sunxx1 committed
112

renzhc's avatar
renzhc committed
113
114
### Tiny-ImageNet-200

chenzk's avatar
chenzk committed
115
由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试,此时需要对配置脚本进行一些修改,可参照mmpretrain-mmcv子仓库进行配置,其中提供了使用Tiny-ImageNet-200进行训练的若干配置脚本。
renzhc's avatar
renzhc committed
116

renzhc's avatar
renzhc committed
117
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于Tiny-ImageNet,目录结构如下:
renzhc's avatar
renzhc committed
118

Rayyyyy's avatar
Rayyyyy committed
119
```
renzhc's avatar
renzhc committed
120
121
122
123
124
125
126
data
└── imagenet
    ├── test/
    ├── train/
    ├── val/
    ├── wnids.txt
    └── words.txt
Rayyyyy's avatar
Rayyyyy committed
127
```
dcuai's avatar
dcuai committed
128

renzhc's avatar
renzhc committed
129
## 训练
renzhc's avatar
renzhc committed
130

renzhc's avatar
renzhc committed
131
- Tiny-ImageNet-200
renzhc's avatar
renzhc committed
132
133
134
135
136

```shell
bash tools/dist_train.sh vgg16-test.py 8
```

renzhc's avatar
renzhc committed
137
- ImageNet
renzhc's avatar
renzhc committed
138
139
140
141
142

```shell
bash tools/dist_train.sh configs/vgg/vgg16_8xb32_in1k.py 8
```

renzhc's avatar
renzhc committed
143
144
145
146
tips:如需其他卡数训练,将命令中的8改为所需卡数即可;如遇端口占用问题,可在tools/dist_train.sh修改端口。

## Result

chenzk's avatar
chenzk committed
147
![img](https://developer.sourcefind.cn/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)
renzhc's avatar
renzhc committed
148

renzhc's avatar
renzhc committed
149
### 精度
dcuai's avatar
dcuai committed
150

renzhc's avatar
renzhc committed
151
测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。
sunxx1's avatar
sunxx1 committed
152

renzhc's avatar
renzhc committed
153
154
155
| 卡数  | 精度                      |
|:---:|:-----------------------:|
| 8   | top1:0.7162;top5:0.9049 |
sunxx1's avatar
sunxx1 committed
156

sunxx1's avatar
sunxx1 committed
157
## 应用场景
renzhc's avatar
renzhc committed
158

sunxx1's avatar
sunxx1 committed
159
### 算法类别
renzhc's avatar
renzhc committed
160

sunxx1's avatar
sunxx1 committed
161
162
163
图像分类

### 热点行业
renzhc's avatar
renzhc committed
164
165

制造,能源,交通,网安,安防
sunxx1's avatar
sunxx1 committed
166

dcuai's avatar
dcuai committed
167
## 源码仓库及问题反馈
renzhc's avatar
renzhc committed
168

chenzk's avatar
chenzk committed
169
https://developer.sourcefind.cn/codes/modelzoo/vgg16_mmcv
sunxx1's avatar
sunxx1 committed
170

dcuai's avatar
dcuai committed
171
## 参考资料
renzhc's avatar
renzhc committed
172
173

https://github.com/open-mmlab/mmpretrainhttps://github.com/open-mmlab/mmpretrain