netcdf.py 6.5 KB
Newer Older
mashun1's avatar
veros  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import json
import datetime
import threading
import contextlib

import numpy as np

from veros import (
    logger,
    variables,
    distributed,
    runtime_state,
    runtime_settings as rs,
    __version__ as veros_version,
)

"""
netCDF output is designed to follow the COARDS guidelines from
http://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
"""


def _get_setup_code(pyfile):
    try:
        with open(pyfile, "r") as f:
            return f.read()
    except FileNotFoundError:
        return "UNKNOWN"


def initialize_file(state, ncfile, extra_dimensions=None, create_time_dimension=True):
    """
    Define standard grid in netcdf file
    """
    import h5netcdf

    if not isinstance(ncfile, h5netcdf.File):
        raise TypeError("Argument needs to be a netCDF4 Dataset")

    if rs.setup_file is None:
        setup_file = "UNKNOWN"
        setup_code = "UNKNOWN"
    else:
        setup_file = rs.setup_file
        setup_code = _get_setup_code(rs.setup_file)

    ncfile.attrs.update(
        date_created=datetime.datetime.today().isoformat(),
        veros_version=veros_version,
        setup_identifier=state.settings.identifier,
        setup_description=state.settings.description,
        setup_settings=json.dumps(state.settings.todict()),
        setup_file=setup_file,
        setup_code=setup_code,
    )

    dimensions = dict(state.dimensions)
    if extra_dimensions is not None:
        dimensions.update(extra_dimensions)

    for dim in dimensions:
        # time steps are peeled off explicitly
        if dim in variables.TIMESTEPS:
            continue

        if dim in state.var_meta:
            var = state.var_meta[dim]

            # skip inactive dimensions
            if not var.active:
                continue

            var_data = getattr(state.variables, dim)
        else:
            # create dummy variable for dimensions without data
            var = variables.Variable(dim, (dim,), time_dependent=False)
            var_data = np.arange(dimensions[dim])

        dimsize = variables.get_shape(dimensions, var.dims[::-1], include_ghosts=False, local=False)[0]
        ncfile.dimensions[dim] = dimsize
        initialize_variable(state, dim, var, ncfile)
        write_variable(state, dim, var, var_data, ncfile)

    if create_time_dimension:
        ncfile.dimensions["Time"] = None
        nc_dim_var_time = ncfile.create_variable("Time", ("Time",), float)
        nc_dim_var_time.attrs.update(
            long_name="Time",
            units="days",
            time_origin="01-JAN-1900 00:00:00",
        )


def initialize_variable(state, key, var, ncfile):
    if var.dims is None:
        dims = ()
    else:
        dims = tuple(d for d in var.dims if d in ncfile.dimensions)

    if var.time_dependent and "Time" in ncfile.dimensions:
        dims += ("Time",)

    if key in ncfile.variables:
        logger.warning(f"Variable {key} already initialized")
        return

    kwargs = {}
    if rs.hdf5_gzip_compression and runtime_state.proc_num == 1:
        kwargs.update(compression="gzip", compression_opts=1)

    chunksize = [
        variables.get_shape(state.dimensions, (d,), local=True, include_ghosts=False)[0] if d in state.dimensions else 1
        for d in dims
    ]

    dtype = var.dtype
    if dtype is None:
        dtype = rs.float_type
    elif dtype == "bool":
        dtype = "uint8"

    fillvalue = variables.get_fill_value(dtype)

    # transpose all dimensions in netCDF output (convention in most ocean models)
    v = ncfile.create_variable(key, dims[::-1], dtype, fillvalue=fillvalue, chunks=tuple(chunksize[::-1]), **kwargs)
    v.missing_value = fillvalue
    v.attrs.update(long_name=var.name, units=var.units, **var.extra_attributes)


def advance_time(time_value, ncfile):
    current_time_step = len(ncfile.variables["Time"])
    ncfile.resize_dimension("Time", current_time_step + 1)
    ncfile.variables["Time"][current_time_step] = time_value


def add_dimension(dim, dim_size, ncfile):
    ncfile.dimensions[dim] = int(dim_size)


def write_variable(state, key, var, var_data, ncfile, time_step=-1):
    var_data = var_data * var.scale

    gridmask = var.get_mask(state.settings, state.variables)
    if gridmask is not None:
        newaxes = (slice(None),) * gridmask.ndim + (np.newaxis,) * (var_data.ndim - gridmask.ndim)
        var_data = np.where(gridmask.astype("bool")[newaxes], var_data, variables.get_fill_value(var_data.dtype))

    if var.dims:
        tmask = tuple(state.variables.tau if dim in variables.TIMESTEPS else slice(None) for dim in var.dims)
        var_data = variables.remove_ghosts(var_data, var.dims)[tmask].T

    var_obj = ncfile.variables[key]

    nx, ny = state.dimensions["xt"], state.dimensions["yt"]
    chunk, _ = distributed.get_chunk_slices(nx, ny, var_obj.dimensions)

    if "Time" in var_obj.dimensions:
        assert var_obj.dimensions[0] == "Time"
        chunk = (time_step,) + chunk[1:]

    var_obj[chunk] = var_data


@contextlib.contextmanager
def threaded_io(filepath, mode):
    """
    If using IO threads, start a new thread to write the netCDF data to disk.
    """
    import h5py
    import h5netcdf

    if rs.use_io_threads:
        _wait_for_disk(filepath)
        _io_locks[filepath].clear()

    kwargs = dict()

    if int(h5py.__version__.split(".")[0]) >= 3:
        kwargs.update(decode_vlen_strings=True)

    if runtime_state.proc_num > 1:
        kwargs.update(driver="mpio", comm=rs.mpi_comm)

    nc_dataset = h5netcdf.File(filepath, mode, **kwargs)

    try:
        yield nc_dataset

    finally:
        if rs.use_io_threads:
            threading.Thread(target=_write_to_disk, args=(nc_dataset, filepath)).start()
        else:
            _write_to_disk(nc_dataset, filepath)


_io_locks = {}


def _add_to_locks(file_id):
    """
    If there is no lock for file_id, create one
    """
    if file_id not in _io_locks:
        _io_locks[file_id] = threading.Event()
        _io_locks[file_id].set()


def _wait_for_disk(file_id):
    """
    Wait for the lock of file_id to be released
    """
    logger.debug(f"Waiting for lock {file_id} to be released")
    _add_to_locks(file_id)
    lock_released = _io_locks[file_id].wait(rs.io_timeout)

    if not lock_released:
        raise RuntimeError("Timeout while waiting for disk IO to finish")


def _write_to_disk(ncfile, file_id):
    """
    Sync netCDF data to disk, close file handle, and release lock.
    May run in a separate thread.
    """
    try:
        ncfile.close()
    finally:
        if rs.use_io_threads and file_id is not None:
            _io_locks[file_id].set()