isoneutral.py 11 KB
Newer Older
mashun1's avatar
veros  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from veros.core.operators import numpy as npx
from veros import logger

from veros import veros_kernel, veros_routine, KernelOutput
from veros.variables import allocate
from veros.core import density, utilities
from veros.core.operators import update, update_add, at


@veros_kernel
def dm_taper(sx, iso_slopec, iso_dslope):
    """
    tapering function for isopycnal slopes
    """
    return 0.5 * (1.0 + npx.tanh((-npx.abs(sx) + iso_slopec) / iso_dslope))


@veros_kernel
def isoneutral_diffusion_pre(state):
    """
    Isopycnal diffusion for tracer
    following functional formulation by Griffies et al
    Code adopted from MOM2.1
    """
    vs = state.variables
    settings = state.settings

    epsln = 1e-20

    dTdx = allocate(state.dimensions, ("xt", "yt", "zt"))
    dSdx = allocate(state.dimensions, ("xt", "yt", "zt"))
    dTdy = allocate(state.dimensions, ("xt", "yt", "zt"))
    dSdy = allocate(state.dimensions, ("xt", "yt", "zt"))
    dTdz = allocate(state.dimensions, ("xt", "yt", "zt"))
    dSdz = allocate(state.dimensions, ("xt", "yt", "zt"))

    """
    drho_dt and drho_ds at centers of T cells
    """
    drdT = vs.maskT * density.get_drhodT(state, vs.salt[:, :, :, vs.tau], vs.temp[:, :, :, vs.tau], npx.abs(vs.zt))
    drdS = vs.maskT * density.get_drhodS(state, vs.salt[:, :, :, vs.tau], vs.temp[:, :, :, vs.tau], npx.abs(vs.zt))

    """
    gradients at top face of T cells
    """
    dTdz = update(
        dTdz,
        at[:, :, :-1],
        vs.maskW[:, :, :-1]
        * (vs.temp[:, :, 1:, vs.tau] - vs.temp[:, :, :-1, vs.tau])
        / vs.dzw[npx.newaxis, npx.newaxis, :-1],
    )
    dSdz = update(
        dSdz,
        at[:, :, :-1],
        vs.maskW[:, :, :-1]
        * (vs.salt[:, :, 1:, vs.tau] - vs.salt[:, :, :-1, vs.tau])
        / vs.dzw[npx.newaxis, npx.newaxis, :-1],
    )

    """
    gradients at eastern face of T cells
    """
    dTdx = update(
        dTdx,
        at[:-1, :, :],
        vs.maskU[:-1, :, :]
        * (vs.temp[1:, :, :, vs.tau] - vs.temp[:-1, :, :, vs.tau])
        / (vs.dxu[:-1, npx.newaxis, npx.newaxis] * vs.cost[npx.newaxis, :, npx.newaxis]),
    )
    dSdx = update(
        dSdx,
        at[:-1, :, :],
        vs.maskU[:-1, :, :]
        * (vs.salt[1:, :, :, vs.tau] - vs.salt[:-1, :, :, vs.tau])
        / (vs.dxu[:-1, npx.newaxis, npx.newaxis] * vs.cost[npx.newaxis, :, npx.newaxis]),
    )

    """
    gradients at northern face of T cells
    """
    dTdy = update(
        dTdy,
        at[:, :-1, :],
        vs.maskV[:, :-1, :]
        * (vs.temp[:, 1:, :, vs.tau] - vs.temp[:, :-1, :, vs.tau])
        / vs.dyu[npx.newaxis, :-1, npx.newaxis],
    )
    dSdy = update(
        dSdy,
        at[:, :-1, :],
        vs.maskV[:, :-1, :]
        * (vs.salt[:, 1:, :, vs.tau] - vs.salt[:, :-1, :, vs.tau])
        / vs.dyu[npx.newaxis, :-1, npx.newaxis],
    )

    """
    Compute Ai_ez and K11 on center of east face of T cell.
    """
    diffloc = allocate(state.dimensions, ("xt", "yt", "zt"))
    diffloc = update(
        diffloc,
        at[1:-2, 2:-2, 1:],
        0.25
        * (vs.K_iso[1:-2, 2:-2, 1:] + vs.K_iso[1:-2, 2:-2, :-1] + vs.K_iso[2:-1, 2:-2, 1:] + vs.K_iso[2:-1, 2:-2, :-1]),
    )
    diffloc = update(diffloc, at[1:-2, 2:-2, 0], 0.5 * (vs.K_iso[1:-2, 2:-2, 0] + vs.K_iso[2:-1, 2:-2, 0]))

    sumz = allocate(state.dimensions, ("xt", "yt", "zt"))[1:-2, 2:-2]
    for kr in range(2):
        ki = 0 if kr == 1 else 1
        for ip in range(2):
            drodxe = (
                drdT[1 + ip : -2 + ip, 2:-2, ki:] * dTdx[1:-2, 2:-2, ki:]
                + drdS[1 + ip : -2 + ip, 2:-2, ki:] * dSdx[1:-2, 2:-2, ki:]
            )
            drodze = (
                drdT[1 + ip : -2 + ip, 2:-2, ki:] * dTdz[1 + ip : -2 + ip, 2:-2, : -1 + kr or None]
                + drdS[1 + ip : -2 + ip, 2:-2, ki:] * dSdz[1 + ip : -2 + ip, 2:-2, : -1 + kr or None]
            )
            sxe = -drodxe / (npx.minimum(0.0, drodze) - epsln)
            taper = dm_taper(sxe, settings.iso_slopec, settings.iso_dslope)
            sumz = update_add(
                sumz,
                at[:, :, ki:],
                vs.dzw[npx.newaxis, npx.newaxis, : -1 + kr or None]
                * vs.maskU[1:-2, 2:-2, ki:]
                * npx.maximum(settings.K_iso_steep, diffloc[1:-2, 2:-2, ki:] * taper),
            )
            vs.Ai_ez = update(vs.Ai_ez, at[1:-2, 2:-2, ki:, ip, kr], taper * sxe * vs.maskU[1:-2, 2:-2, ki:])

    vs.K_11 = update(vs.K_11, at[1:-2, 2:-2, :], sumz / (4.0 * vs.dzt[npx.newaxis, npx.newaxis, :]))

    """
    Compute Ai_nz and K_22 on center of north face of T cell.
    """
    diffloc = update(diffloc, at[...], 0)
    diffloc = update(
        diffloc,
        at[2:-2, 1:-2, 1:],
        0.25
        * (vs.K_iso[2:-2, 1:-2, 1:] + vs.K_iso[2:-2, 1:-2, :-1] + vs.K_iso[2:-2, 2:-1, 1:] + vs.K_iso[2:-2, 2:-1, :-1]),
    )
    diffloc = update(diffloc, at[2:-2, 1:-2, 0], 0.5 * (vs.K_iso[2:-2, 1:-2, 0] + vs.K_iso[2:-2, 2:-1, 0]))

    sumz = allocate(state.dimensions, ("xt", "yt", "zt"))[2:-2, 1:-2]
    for kr in range(2):
        ki = 0 if kr == 1 else 1
        for jp in range(2):
            drodyn = (
                drdT[2:-2, 1 + jp : -2 + jp, ki:] * dTdy[2:-2, 1:-2, ki:]
                + drdS[2:-2, 1 + jp : -2 + jp, ki:] * dSdy[2:-2, 1:-2, ki:]
            )
            drodzn = (
                drdT[2:-2, 1 + jp : -2 + jp, ki:] * dTdz[2:-2, 1 + jp : -2 + jp, : -1 + kr or None]
                + drdS[2:-2, 1 + jp : -2 + jp, ki:] * dSdz[2:-2, 1 + jp : -2 + jp, : -1 + kr or None]
            )
            syn = -drodyn / (npx.minimum(0.0, drodzn) - epsln)
            taper = dm_taper(syn, settings.iso_slopec, settings.iso_dslope)
            sumz = update_add(
                sumz,
                at[:, :, ki:],
                vs.dzw[npx.newaxis, npx.newaxis, : -1 + kr or None]
                * vs.maskV[2:-2, 1:-2, ki:]
                * npx.maximum(settings.K_iso_steep, diffloc[2:-2, 1:-2, ki:] * taper),
            )
            vs.Ai_nz = update(vs.Ai_nz, at[2:-2, 1:-2, ki:, jp, kr], taper * syn * vs.maskV[2:-2, 1:-2, ki:])
    vs.K_22 = update(vs.K_22, at[2:-2, 1:-2, :], sumz / (4.0 * vs.dzt[npx.newaxis, npx.newaxis, :]))

    """
    compute Ai_bx, Ai_by and K33 on top face of T cell.
    """
    sumx = allocate(state.dimensions, ("xt", "yt", "zt"))[2:-2, 2:-2, :-1]
    sumy = allocate(state.dimensions, ("xt", "yt", "zt"))[2:-2, 2:-2, :-1]

    for kr in range(2):
        drodzb = (
            drdT[2:-2, 2:-2, kr : -1 + kr or None] * dTdz[2:-2, 2:-2, :-1]
            + drdS[2:-2, 2:-2, kr : -1 + kr or None] * dSdz[2:-2, 2:-2, :-1]
        )

        # eastward slopes at the top of T cells
        for ip in range(2):
            drodxb = (
                drdT[2:-2, 2:-2, kr : -1 + kr or None] * dTdx[1 + ip : -3 + ip, 2:-2, kr : -1 + kr or None]
                + drdS[2:-2, 2:-2, kr : -1 + kr or None] * dSdx[1 + ip : -3 + ip, 2:-2, kr : -1 + kr or None]
            )
            sxb = -drodxb / (npx.minimum(0.0, drodzb) - epsln)
            taper = dm_taper(sxb, settings.iso_slopec, settings.iso_dslope)
            sumx = (
                sumx
                + vs.dxu[1 + ip : -3 + ip, npx.newaxis, npx.newaxis]
                * vs.K_iso[2:-2, 2:-2, :-1]
                * taper
                * sxb**2
                * vs.maskW[2:-2, 2:-2, :-1]
            )
            vs.Ai_bx = update(vs.Ai_bx, at[2:-2, 2:-2, :-1, ip, kr], taper * sxb * vs.maskW[2:-2, 2:-2, :-1])

        # northward slopes at the top of T cells
        for jp in range(2):
            facty = vs.cosu[1 + jp : -3 + jp] * vs.dyu[1 + jp : -3 + jp]
            drodyb = (
                drdT[2:-2, 2:-2, kr : -1 + kr or None] * dTdy[2:-2, 1 + jp : -3 + jp, kr : -1 + kr or None]
                + drdS[2:-2, 2:-2, kr : -1 + kr or None] * dSdy[2:-2, 1 + jp : -3 + jp, kr : -1 + kr or None]
            )
            syb = -drodyb / (npx.minimum(0.0, drodzb) - epsln)
            taper = dm_taper(syb, settings.iso_slopec, settings.iso_dslope)
            sumy = (
                sumy
                + facty[npx.newaxis, :, npx.newaxis]
                * vs.K_iso[2:-2, 2:-2, :-1]
                * taper
                * syb**2
                * vs.maskW[2:-2, 2:-2, :-1]
            )
            vs.Ai_by = update(vs.Ai_by, at[2:-2, 2:-2, :-1, jp, kr], taper * syb * vs.maskW[2:-2, 2:-2, :-1])

    vs.K_33 = update(
        vs.K_33,
        at[2:-2, 2:-2, :-1],
        sumx / (4 * vs.dxt[2:-2, npx.newaxis, npx.newaxis])
        + sumy / (4 * vs.dyt[npx.newaxis, 2:-2, npx.newaxis] * vs.cost[npx.newaxis, 2:-2, npx.newaxis]),
    )
    vs.K_33 = update(vs.K_33, at[..., -1], 0.0)

    return KernelOutput(
        Ai_ez=vs.Ai_ez, Ai_nz=vs.Ai_nz, Ai_bx=vs.Ai_bx, Ai_by=vs.Ai_by, K_11=vs.K_11, K_22=vs.K_22, K_33=vs.K_33
    )


@veros_kernel
def isoneutral_diag_streamfunction_kernel(state):
    vs = state.variables

    K_gm_pad = utilities.pad_z_edges(vs.K_gm)

    """
    meridional component at east face of 'T' cells
    """
    diffloc = 0.25 * (
        K_gm_pad[1:-2, 2:-2, 1:-1] + K_gm_pad[1:-2, 2:-2, :-2] + K_gm_pad[2:-1, 2:-2, 1:-1] + K_gm_pad[2:-1, 2:-2, :-2]
    )
    vs.B2_gm = update(vs.B2_gm, at[1:-2, 2:-2, :], 0.25 * diffloc * npx.sum(vs.Ai_ez[1:-2, 2:-2, ...], axis=(3, 4)))

    """
    zonal component at north face of 'T' cells
    """
    diffloc = 0.25 * (
        K_gm_pad[2:-2, 1:-2, 1:-1] + K_gm_pad[2:-2, 1:-2, :-2] + K_gm_pad[2:-2, 2:-1, 1:-1] + K_gm_pad[2:-2, 2:-1, :-2]
    )
    vs.B1_gm = update(vs.B1_gm, at[2:-2, 1:-2, :], -0.25 * diffloc * npx.sum(vs.Ai_nz[2:-2, 1:-2, ...], axis=(3, 4)))

    return KernelOutput(B1_gm=vs.B1_gm, B2_gm=vs.B2_gm)


@veros_routine
def isoneutral_diag_streamfunction(state):
    """
    calculate hor. components of streamfunction for eddy driven velocity
    for diagnostics purpose only
    """
    vs = state.variables
    settings = state.settings

    if not (settings.enable_neutral_diffusion and settings.enable_skew_diffusion):
        return

    vs.update(isoneutral_diag_streamfunction_kernel(state))


@veros_routine
def check_isoneutral_slope_crit(state):
    """
    check linear stability criterion from Griffies et al
    """
    vs = state.variables
    settings = state.settings

    epsln = 1e-20
    if settings.enable_neutral_diffusion:
        ft1 = 1.0 / (4.0 * settings.K_iso_0 * settings.dt_tracer + epsln)
        delta1a = npx.min(
            vs.dxt[2:-2, npx.newaxis, npx.newaxis]
            * npx.abs(vs.cost[npx.newaxis, 2:-2, npx.newaxis])
            * vs.dzt[npx.newaxis, npx.newaxis, :]
            * ft1
        )
        delta1b = npx.min(vs.dyt[npx.newaxis, 2:-2, npx.newaxis] * vs.dzt[npx.newaxis, npx.newaxis, :] * ft1)
        delta_iso1 = min(vs.dzt[0] * ft1 * vs.dxt[-1] * abs(vs.cost[-1]), min(delta1a, delta1b))

        logger.info("Diffusion grid factor delta_iso1 = {}", float(delta_iso1))
        if delta_iso1 < settings.iso_slopec:
            raise RuntimeError(
                "Without latitudinal filtering, delta_iso1 is the steepest "
                "isoneutral slope available for linear stability of "
                "Redi and GM. Maximum allowable isoneutral slope is "
                f"specified as iso_slopec = {settings.iso_slopec}."
            )