eke.py 8.65 KB
Newer Older
mashun1's avatar
veros  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from veros.core.operators import numpy as npx

from veros import veros_kernel, veros_routine, KernelOutput
from veros.variables import allocate
from veros.core import utilities, advection
from veros.core.operators import update, update_add, at


@veros_routine
def set_eke_diffusivities(state):
    vs = state.variables
    settings = state.settings

    eke_diff_out = set_eke_diffusivities_kernel(state)
    vs.update(eke_diff_out)

    if settings.enable_TEM_friction:
        kappa_gm_out = update_kappa_gm(state)
        vs.update(kappa_gm_out)


@veros_kernel
def update_kappa_gm(state):
    vs = state.variables

    kappa_gm = (
        vs.K_gm
        * npx.minimum(0.01, vs.coriolis_t[..., npx.newaxis] ** 2 / npx.maximum(1e-9, vs.Nsqr[..., vs.tau]))
        * vs.maskW
    )
    return KernelOutput(kappa_gm=kappa_gm)


@veros_kernel
def set_eke_diffusivities_kernel(state):
    """
    set skew diffusivity K_gm and isopycnal diffusivity K_iso
    set also vertical viscosity if TEM formalism is chosen
    """
    vs = state.variables
    settings = state.settings

    if settings.enable_eke:
        """
        calculate Rossby radius as minimum of mid-latitude and equatorial R. rad.
        """
        C_rossby = npx.sum(
            npx.sqrt(npx.maximum(0.0, vs.Nsqr[:, :, :, vs.tau]))
            * vs.dzw[npx.newaxis, npx.newaxis, :]
            * vs.maskW[:, :, :]
            / settings.pi,
            axis=2,
        )
        vs.L_rossby = npx.minimum(
            C_rossby / npx.maximum(npx.abs(vs.coriolis_t), 1e-16), npx.sqrt(C_rossby / npx.maximum(2 * vs.beta, 1e-16))
        )

        """
        calculate vertical viscosity and skew diffusivity
        """
        vs.sqrteke = npx.sqrt(npx.maximum(0.0, vs.eke[:, :, :, vs.tau]))
        vs.L_rhines = npx.sqrt(vs.sqrteke / npx.maximum(vs.beta[..., npx.newaxis], 1e-16))
        vs.eke_len = npx.maximum(
            settings.eke_lmin,
            npx.minimum(settings.eke_cross * vs.L_rossby[..., npx.newaxis], settings.eke_crhin * vs.L_rhines),
        )
        vs.K_gm = npx.minimum(settings.eke_k_max, settings.eke_c_k * vs.eke_len * vs.sqrteke)
    else:
        """
        use fixed GM diffusivity
        """
        vs.K_gm = update(vs.K_gm, at[...], settings.K_gm_0)

    if settings.enable_eke and settings.enable_eke_isopycnal_diffusion:
        vs.K_iso = update(vs.K_iso, at[...], vs.K_gm)
    else:
        vs.K_iso = update(vs.K_iso, at[...], settings.K_iso_0)  # always constant

    if not settings.enable_eke:
        return KernelOutput(K_gm=vs.K_gm, K_iso=vs.K_iso)

    return KernelOutput(
        L_rossby=vs.L_rossby, L_rhines=vs.L_rhines, eke_len=vs.eke_len, sqrteke=vs.sqrteke, K_gm=vs.K_gm, K_iso=vs.K_iso
    )


@veros_routine
def integrate_eke(state):
    vs = state.variables
    vs.update(integrate_eke_kernel(state))


@veros_kernel
def integrate_eke_kernel(state):
    """
    integrate EKE equation on W grid
    """
    vs = state.variables
    settings = state.settings

    c_int = allocate(state.dimensions, ("xt", "yt", "zt"))

    flux_east = allocate(state.dimensions, ("xt", "yt", "zt"))
    flux_north = allocate(state.dimensions, ("xt", "yt", "zt"))
    flux_top = allocate(state.dimensions, ("xt", "yt", "zt"))

    """
    forcing by dissipation by lateral friction and GM using TRM formalism or skew diffusion
    """
    forc = vs.K_diss_gm + vs.K_diss_h - vs.P_diss_skew

    """
    store transfer due to isopycnal and horizontal mixing from dyn. enthalpy
    by non-linear eq.of state either to EKE or to heat
    """
    if not settings.enable_store_cabbeling_heat:
        forc = forc - vs.P_diss_hmix - vs.P_diss_iso

    conditional_outputs = {}

    """
    dissipation by local interior loss of balance with constant coefficient
    """
    c_int = settings.eke_c_eps * vs.sqrteke / vs.eke_len * vs.maskW

    """
    vertical diffusion of EKE,forcing and dissipation
    """
    _, water_mask, edge_mask = utilities.create_water_masks(vs.kbot[2:-2, 2:-2], settings.nz)

    delta, a_tri, b_tri, c_tri, d_tri = (
        allocate(state.dimensions, ("xt", "yt", "zt"))[2:-2, 2:-2, :] for _ in range(5)
    )
    delta = update(
        delta,
        at[:, :, :-1],
        settings.dt_tracer
        / vs.dzt[npx.newaxis, npx.newaxis, 1:]
        * 0.5
        * (vs.kappaM[2:-2, 2:-2, :-1] + vs.kappaM[2:-2, 2:-2, 1:])
        * settings.alpha_eke,
    )
    a_tri = update(a_tri, at[:, :, 1:-1], -delta[:, :, :-2] / vs.dzw[1:-1])
    a_tri = update(a_tri, at[:, :, -1], -delta[:, :, -2] / (0.5 * vs.dzw[-1]))
    b_tri = update(
        b_tri,
        at[:, :, 1:-1],
        1 + (delta[:, :, 1:-1] + delta[:, :, :-2]) / vs.dzw[1:-1] + settings.dt_tracer * c_int[2:-2, 2:-2, 1:-1],
    )
    b_tri = update(
        b_tri, at[:, :, -1], 1 + delta[:, :, -2] / (0.5 * vs.dzw[-1]) + settings.dt_tracer * c_int[2:-2, 2:-2, -1]
    )
    b_tri_edge = 1 + delta / vs.dzw[npx.newaxis, npx.newaxis, :] + settings.dt_tracer * c_int[2:-2, 2:-2, :]
    c_tri = update(c_tri, at[:, :, :-1], -delta[:, :, :-1] / vs.dzw[npx.newaxis, npx.newaxis, :-1])
    d_tri = update(d_tri, at[:, :, :], vs.eke[2:-2, 2:-2, :, vs.tau] + settings.dt_tracer * forc[2:-2, 2:-2, :])

    sol = utilities.solve_implicit(a_tri, b_tri, c_tri, d_tri, water_mask, b_edge=b_tri_edge, edge_mask=edge_mask)
    vs.eke = update(vs.eke, at[2:-2, 2:-2, :, vs.taup1], npx.where(water_mask, sol, vs.eke[2:-2, 2:-2, :, vs.taup1]))

    """
    store eke dissipation
    """
    vs.eke_diss_iw = c_int * vs.eke[:, :, :, vs.taup1]
    vs.eke_diss_tke = update(vs.eke_diss_tke, at[...], 0.0)

    """
    add tendency due to lateral diffusion
    """
    flux_east = update(
        flux_east,
        at[:-1, :, :],
        0.5
        * npx.maximum(500.0, vs.K_gm[:-1, :, :] + vs.K_gm[1:, :, :])
        * (vs.eke[1:, :, :, vs.tau] - vs.eke[:-1, :, :, vs.tau])
        / (vs.cost[npx.newaxis, :, npx.newaxis] * vs.dxu[:-1, npx.newaxis, npx.newaxis])
        * vs.maskU[:-1, :, :],
    )
    flux_east = update(flux_east, at[-1, :, :], 0.0)
    flux_north = update(
        flux_north,
        at[:, :-1, :],
        0.5
        * npx.maximum(500.0, vs.K_gm[:, :-1, :] + vs.K_gm[:, 1:, :])
        * (vs.eke[:, 1:, :, vs.tau] - vs.eke[:, :-1, :, vs.tau])
        / vs.dyu[npx.newaxis, :-1, npx.newaxis]
        * vs.maskV[:, :-1, :]
        * vs.cosu[npx.newaxis, :-1, npx.newaxis],
    )
    flux_north = update(flux_north, at[:, -1, :], 0.0)
    vs.eke = update_add(
        vs.eke,
        at[2:-2, 2:-2, :, vs.taup1],
        settings.dt_tracer
        * vs.maskW[2:-2, 2:-2, :]
        * (
            (flux_east[2:-2, 2:-2, :] - flux_east[1:-3, 2:-2, :])
            / (vs.cost[npx.newaxis, 2:-2, npx.newaxis] * vs.dxt[2:-2, npx.newaxis, npx.newaxis])
            + (flux_north[2:-2, 2:-2, :] - flux_north[2:-2, 1:-3, :])
            / (vs.cost[npx.newaxis, 2:-2, npx.newaxis] * vs.dyt[npx.newaxis, 2:-2, npx.newaxis])
        ),
    )

    """
    add tendency due to advection
    """
    if settings.enable_eke_superbee_advection:
        flux_east, flux_north, flux_top = advection.adv_flux_superbee_wgrid(state, vs.eke[:, :, :, vs.tau])

    if settings.enable_eke_upwind_advection:
        flux_east, flux_north, flux_top = advection.adv_flux_upwind_wgrid(state, vs.eke[:, :, :, vs.tau])

    if settings.enable_eke_superbee_advection or settings.enable_eke_upwind_advection:
        vs.deke = update(
            vs.deke,
            at[2:-2, 2:-2, :, vs.tau],
            vs.maskW[2:-2, 2:-2, :]
            * (
                -(flux_east[2:-2, 2:-2, :] - flux_east[1:-3, 2:-2, :])
                / (vs.cost[npx.newaxis, 2:-2, npx.newaxis] * vs.dxt[2:-2, npx.newaxis, npx.newaxis])
                - (flux_north[2:-2, 2:-2, :] - flux_north[2:-2, 1:-3, :])
                / (vs.cost[npx.newaxis, 2:-2, npx.newaxis] * vs.dyt[npx.newaxis, 2:-2, npx.newaxis])
            ),
        )
        vs.deke = update_add(vs.deke, at[:, :, 0, vs.tau], -flux_top[:, :, 0] / vs.dzw[0])
        vs.deke = update_add(
            vs.deke,
            at[:, :, 1:-1, vs.tau],
            -(flux_top[:, :, 1:-1] - flux_top[:, :, :-2]) / vs.dzw[npx.newaxis, npx.newaxis, 1:-1],
        )
        vs.deke = update_add(
            vs.deke, at[:, :, -1, vs.tau], -(flux_top[:, :, -1] - flux_top[:, :, -2]) / (0.5 * vs.dzw[-1])
        )
        """
        Adam Bashforth time stepping
        """
        vs.eke = update_add(
            vs.eke,
            at[:, :, :, vs.taup1],
            settings.dt_tracer
            * (
                (1.5 + settings.AB_eps) * vs.deke[:, :, :, vs.tau]
                - (0.5 + settings.AB_eps) * vs.deke[:, :, :, vs.taum1]
            ),
        )

        conditional_outputs.update(deke=vs.deke)

    return KernelOutput(eke=vs.eke, eke_diss_iw=vs.eke_diss_iw, eke_diss_tke=vs.eke_diss_tke, **conditional_outputs)