gsw.py 21.8 KB
Newer Older
mashun1's avatar
veros  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
from veros.core.operators import numpy as npx

from veros import veros_kernel, runtime_settings

"""
==========================================================================
  in-situ density, dynamic enthalpy and derivatives
  from Absolute Salinity and Conservative
  Temperature, using the computationally-efficient 48-term expression for
  density in terms of SA, CT and p (IOC et al., 2010).
==========================================================================
"""

v01 = 9.998420897506056e2
v02 = 2.839940833161907e0
v03 = -3.147759265588511e-2
v04 = 1.181805545074306e-3
v05 = -6.698001071123802e0
v06 = -2.986498947203215e-2
v07 = 2.327859407479162e-4
v08 = -3.988822378968490e-2
v09 = 5.095422573880500e-4
v10 = -1.426984671633621e-5
v11 = 1.645039373682922e-7
v12 = -2.233269627352527e-2
v13 = -3.436090079851880e-4
v14 = 3.726050720345733e-6
v15 = -1.806789763745328e-4
v16 = 6.876837219536232e-7
v17 = -3.087032500374211e-7
v18 = -1.988366587925593e-8
v19 = -1.061519070296458e-11
v20 = 1.550932729220080e-10
v21 = 1.0e0
v22 = 2.775927747785646e-3
v23 = -2.349607444135925e-5
v24 = 1.119513357486743e-6
v25 = 6.743689325042773e-10
v26 = -7.521448093615448e-3
v27 = -2.764306979894411e-5
v28 = 1.262937315098546e-7
v29 = 9.527875081696435e-10
v30 = -1.811147201949891e-11
v31 = -3.303308871386421e-5
v32 = 3.801564588876298e-7
v33 = -7.672876869259043e-9
v34 = -4.634182341116144e-11
v35 = 2.681097235569143e-12
v36 = 5.419326551148740e-6
v37 = -2.742185394906099e-5
v38 = -3.212746477974189e-7
v39 = 3.191413910561627e-9
v40 = -1.931012931541776e-12
v41 = -1.105097577149576e-7
v42 = 6.211426728363857e-10
v43 = -1.119011592875110e-10
v44 = -1.941660213148725e-11
v45 = -1.864826425365600e-14
v46 = 1.119522344879478e-14
v47 = -1.200507748551599e-15
v48 = 6.057902487546866e-17
rho0 = 1024.0


@veros_kernel
def gsw_rho(sa, ct, p):
    """
     density as a function of T, S, and p
     sa     : Absolute Salinity                               [g/kg]
     ct     : Conservative Temperature                        [deg C]
     p      : sea pressure                                    [dbar]
    ==========================================================================
    """
    # convert scalar values if necessary
    sa, ct, p = npx.asarray(sa), npx.asarray(ct), npx.asarray(p)
    sqrtsa = npx.sqrt(sa)
    v_hat_denominator = (
        v01
        + ct * (v02 + ct * (v03 + v04 * ct))
        + sa * (v05 + ct * (v06 + v07 * ct) + sqrtsa * (v08 + ct * (v09 + ct * (v10 + v11 * ct))))
        + p * (v12 + ct * (v13 + v14 * ct) + sa * (v15 + v16 * ct) + p * (v17 + ct * (v18 + v19 * ct) + v20 * sa))
    )
    v_hat_numerator = (
        v21
        + ct * (v22 + ct * (v23 + ct * (v24 + v25 * ct)))
        + sa
        * (
            v26
            + ct * (v27 + ct * (v28 + ct * (v29 + v30 * ct)))
            + v36 * sa
            + sqrtsa * (v31 + ct * (v32 + ct * (v33 + ct * (v34 + v35 * ct))))
        )
        + p
        * (
            v37
            + ct * (v38 + ct * (v39 + v40 * ct))
            + sa * (v41 + v42 * ct)
            + p * (v43 + ct * (v44 + v45 * ct + v46 * sa) + p * (v47 + v48 * ct))
        )
    )
    return v_hat_denominator / v_hat_numerator - rho0


@veros_kernel
def gsw_drhodT(sa, ct, p):
    """
    d/dT of density
    sa     : Absolute Salinity                               [g/kg]
    ct     : Conservative Temperature                        [deg C]
    p      : sea pressure                                    [dbar]
    ==========================================================================
    """
    p = npx.asarray(p)  # convert scalar value if necessary
    a01 = 2.839940833161907e0
    a02 = -6.295518531177023e-2
    a03 = 3.545416635222918e-3
    a04 = -2.986498947203215e-2
    a05 = 4.655718814958324e-4
    a06 = 5.095422573880500e-4
    a07 = -2.853969343267241e-5
    a08 = 4.935118121048767e-7
    a09 = -3.436090079851880e-4
    a10 = 7.452101440691467e-6
    a11 = 6.876837219536232e-7
    a12 = -1.988366587925593e-8
    a13 = -2.123038140592916e-11
    a14 = 2.775927747785646e-3
    a15 = -4.699214888271850e-5
    a16 = 3.358540072460230e-6
    a17 = 2.697475730017109e-9
    a18 = -2.764306979894411e-5
    a19 = 2.525874630197091e-7
    a20 = 2.858362524508931e-9
    a21 = -7.244588807799565e-11
    a22 = 3.801564588876298e-7
    a23 = -1.534575373851809e-8
    a24 = -1.390254702334843e-10
    a25 = 1.072438894227657e-11
    a26 = -3.212746477974189e-7
    a27 = 6.382827821123254e-9
    a28 = -5.793038794625329e-12
    a29 = 6.211426728363857e-10
    a30 = -1.941660213148725e-11
    a31 = -3.729652850731201e-14
    a32 = 1.119522344879478e-14
    a33 = 6.057902487546866e-17

    sqrtsa = npx.sqrt(sa)
    v_hat_denominator = (
        v01
        + ct * (v02 + ct * (v03 + v04 * ct))
        + sa * (v05 + ct * (v06 + v07 * ct) + sqrtsa * (v08 + ct * (v09 + ct * (v10 + v11 * ct))))
        + p * (v12 + ct * (v13 + v14 * ct) + sa * (v15 + v16 * ct) + p * (v17 + ct * (v18 + v19 * ct) + v20 * sa))
    )

    v_hat_numerator = (
        v21
        + ct * (v22 + ct * (v23 + ct * (v24 + v25 * ct)))
        + sa
        * (
            v26
            + ct * (v27 + ct * (v28 + ct * (v29 + v30 * ct)))
            + v36 * sa
            + sqrtsa * (v31 + ct * (v32 + ct * (v33 + ct * (v34 + v35 * ct))))
        )
        + p
        * (
            v37
            + ct * (v38 + ct * (v39 + v40 * ct))
            + sa * (v41 + v42 * ct)
            + p * (v43 + ct * (v44 + v45 * ct + v46 * sa) + p * (v47 + v48 * ct))
        )
    )

    dvhatden_dct = (
        a01
        + ct * (a02 + a03 * ct)
        + sa * (a04 + a05 * ct + sqrtsa * (a06 + ct * (a07 + a08 * ct)))
        + p * (a09 + a10 * ct + a11 * sa + p * (a12 + a13 * ct))
    )

    dvhatnum_dct = (
        a14
        + ct * (a15 + ct * (a16 + a17 * ct))
        + sa * (a18 + ct * (a19 + ct * (a20 + a21 * ct)) + sqrtsa * (a22 + ct * (a23 + ct * (a24 + a25 * ct))))
        + p * (a26 + ct * (a27 + a28 * ct) + a29 * sa + p * (a30 + a31 * ct + a32 * sa + a33 * p))
    )

    rec_num = 1.0 / v_hat_numerator
    rho = rec_num * v_hat_denominator
    return (dvhatden_dct - dvhatnum_dct * rho) * rec_num


@veros_kernel
def gsw_drhodS(sa, ct, p):
    """
     d/dS of density
     sa     : Absolute Salinity                               [g/kg]
     ct     : Conservative Temperature                        [deg C]
     p      : sea pressure                                    [dbar]
    ==========================================================================
    """
    p = npx.asarray(p)  # convert scalar value if necessary
    b01 = -6.698001071123802e0
    b02 = -2.986498947203215e-2
    b03 = 2.327859407479162e-4
    b04 = -5.983233568452735e-2
    b05 = 7.643133860820750e-4
    b06 = -2.140477007450431e-5
    b07 = 2.467559060524383e-7
    b08 = -1.806789763745328e-4
    b09 = 6.876837219536232e-7
    b10 = 1.550932729220080e-10
    b11 = -7.521448093615448e-3
    b12 = -2.764306979894411e-5
    b13 = 1.262937315098546e-7
    b14 = 9.527875081696435e-10
    b15 = -1.811147201949891e-11
    b16 = -4.954963307079632e-5
    b17 = 5.702346883314446e-7
    b18 = -1.150931530388857e-8
    b19 = -6.951273511674217e-11
    b20 = 4.021645853353715e-12
    b21 = 1.083865310229748e-5
    b22 = -1.105097577149576e-7
    b23 = 6.211426728363857e-10
    b24 = 1.119522344879478e-14

    sqrtsa = npx.sqrt(sa)
    v_hat_denominator = (
        v01
        + ct * (v02 + ct * (v03 + v04 * ct))
        + sa * (v05 + ct * (v06 + v07 * ct) + sqrtsa * (v08 + ct * (v09 + ct * (v10 + v11 * ct))))
        + p * (v12 + ct * (v13 + v14 * ct) + sa * (v15 + v16 * ct) + p * (v17 + ct * (v18 + v19 * ct) + v20 * sa))
    )

    v_hat_numerator = (
        v21
        + ct * (v22 + ct * (v23 + ct * (v24 + v25 * ct)))
        + sa
        * (
            v26
            + ct * (v27 + ct * (v28 + ct * (v29 + v30 * ct)))
            + v36 * sa
            + sqrtsa * (v31 + ct * (v32 + ct * (v33 + ct * (v34 + v35 * ct))))
        )
        + p
        * (
            v37
            + ct * (v38 + ct * (v39 + v40 * ct))
            + sa * (v41 + v42 * ct)
            + p * (v43 + ct * (v44 + v45 * ct + v46 * sa) + p * (v47 + v48 * ct))
        )
    )

    dvhatden_dsa = (
        b01
        + ct * (b02 + b03 * ct)
        + sqrtsa * (b04 + ct * (b05 + ct * (b06 + b07 * ct)))
        + p * (b08 + b09 * ct + b10 * p)
    )

    dvhatnum_dsa = (
        b11
        + ct * (b12 + ct * (b13 + ct * (b14 + b15 * ct)))
        + sqrtsa * (b16 + ct * (b17 + ct * (b18 + ct * (b19 + b20 * ct))))
        + b21 * sa
        + p * (b22 + ct * (b23 + b24 * p))
    )

    rec_num = 1.0 / v_hat_numerator
    rho = rec_num * v_hat_denominator
    return (dvhatden_dsa - dvhatnum_dsa * rho) * rec_num


@veros_kernel
def gsw_drhodP(sa, ct, p):
    """
     d/dp of density
     sa     : Absolute Salinity                               [g/kg]
     ct     : Conservative Temperature                        [deg C]
     p      : sea pressure                                    [dbar]
    ==========================================================================
    """
    p = npx.asarray(p)  # convert scalar value if necessary
    c01 = -2.233269627352527e-2
    c02 = -3.436090079851880e-4
    c03 = 3.726050720345733e-6
    c04 = -1.806789763745328e-4
    c05 = 6.876837219536232e-7
    c06 = -6.174065000748422e-7
    c07 = -3.976733175851186e-8
    c08 = -2.123038140592916e-11
    c09 = 3.101865458440160e-10
    c10 = -2.742185394906099e-5
    c11 = -3.212746477974189e-7
    c12 = 3.191413910561627e-9
    c13 = -1.931012931541776e-12
    c14 = -1.105097577149576e-7
    c15 = 6.211426728363857e-10
    c16 = -2.238023185750219e-10
    c17 = -3.883320426297450e-11
    c18 = -3.729652850731201e-14
    c19 = 2.239044689758956e-14
    c20 = -3.601523245654798e-15
    c21 = 1.817370746264060e-16
    pa2db = 1e-4

    sqrtsa = npx.sqrt(sa)
    v_hat_denominator = (
        v01
        + ct * (v02 + ct * (v03 + v04 * ct))
        + sa * (v05 + ct * (v06 + v07 * ct) + sqrtsa * (v08 + ct * (v09 + ct * (v10 + v11 * ct))))
        + p * (v12 + ct * (v13 + v14 * ct) + sa * (v15 + v16 * ct) + p * (v17 + ct * (v18 + v19 * ct) + v20 * sa))
    )

    v_hat_numerator = (
        v21
        + ct * (v22 + ct * (v23 + ct * (v24 + v25 * ct)))
        + sa
        * (
            v26
            + ct * (v27 + ct * (v28 + ct * (v29 + v30 * ct)))
            + v36 * sa
            + sqrtsa * (v31 + ct * (v32 + ct * (v33 + ct * (v34 + v35 * ct))))
        )
        + p
        * (
            v37
            + ct * (v38 + ct * (v39 + v40 * ct))
            + sa * (v41 + v42 * ct)
            + p * (v43 + ct * (v44 + v45 * ct + v46 * sa) + p * (v47 + v48 * ct))
        )
    )

    dvhatden_dp = c01 + ct * (c02 + c03 * ct) + sa * (c04 + c05 * ct) + p * (c06 + ct * (c07 + c08 * ct) + c09 * sa)

    dvhatnum_dp = (
        c10
        + ct * (c11 + ct * (c12 + c13 * ct))
        + sa * (c14 + c15 * ct)
        + p * (c16 + ct * (c17 + c18 * ct + c19 * sa) + p * (c20 + c21 * ct))
    )

    rec_num = 1.0 / v_hat_numerator
    rho = rec_num * v_hat_denominator
    return pa2db * (dvhatden_dp - dvhatnum_dp * rho) * rec_num


@veros_kernel
def gsw_dyn_enthalpy(sa_in, ct_in, p):
    """
     Calculates dynamic enthalpy of seawater using the computationally
     efficient 48-term expression for density in terms of SA, CT and p
     (IOC et al., 2010)

     A component due to the constant reference density in Boussinesq
     approximation is removed

     sa     : Absolute Salinity                               [g/kg]
     ct     : Conservative Temperature                        [deg C]
     p      : sea pressure                                    [dbar]
    ==========================================================================
    """
    p = npx.asarray(p)  # convert scalar value if necessary

    if runtime_settings.pyom_compatibility_mode:
        sa = sa_in
        ct = ct_in
    else:
        sa = npx.maximum(1e-1, sa_in)  # prevent division by zero
        ct = npx.maximum(-12, ct_in)  # prevent blowing up for values smaller than -15 degC

    db2pa = 1e4  # factor to convert from dbar to Pa
    sqrtsa = npx.sqrt(sa)
    a0 = (
        v21
        + ct * (v22 + ct * (v23 + ct * (v24 + v25 * ct)))
        + sa
        * (
            v26
            + ct * (v27 + ct * (v28 + ct * (v29 + v30 * ct)))
            + v36 * sa
            + sqrtsa * (v31 + ct * (v32 + ct * (v33 + ct * (v34 + v35 * ct))))
        )
    )
    a1 = v37 + ct * (v38 + ct * (v39 + v40 * ct)) + sa * (v41 + v42 * ct)
    a2 = v43 + ct * (v44 + v45 * ct + v46 * sa)
    a3 = v47 + v48 * ct
    b0 = (
        v01
        + ct * (v02 + ct * (v03 + v04 * ct))
        + sa * (v05 + ct * (v06 + v07 * ct) + sqrtsa * (v08 + ct * (v09 + ct * (v10 + v11 * ct))))
    )
    b1 = 0.5 * (v12 + ct * (v13 + v14 * ct) + sa * (v15 + v16 * ct))
    b2 = v17 + ct * (v18 + v19 * ct) + v20 * sa
    b1sq = b1 * b1
    sqrt_disc = npx.sqrt(b1sq - b0 * b2)
    cn = a0 + (2 * a3 * b0 * b1 / b2 - a2 * b0) / b2
    cm = a1 + (4 * a3 * b1sq / b2 - a3 * b0 - 2 * a2 * b1) / b2
    ca = b1 - sqrt_disc
    cb = b1 + sqrt_disc
    part = (cn * b2 - cm * b1) / (b2 * (cb - ca))
    Hd = db2pa * (
        p * (a2 - 2.0 * a3 * b1 / b2 + 0.5 * a3 * p) / b2
        + (cm / (2.0 * b2)) * npx.log(1.0 + p * (2.0 * b1 + b2 * p) / b0)
        + part * npx.log(1.0 + (b2 * p * (cb - ca)) / (ca * (cb + b2 * p)))
    )
    return Hd - p * db2pa / rho0


@veros_kernel
def gsw_dHdT(sa_in, ct_in, p):
    """
    d/dT of dynamic enthalpy, analytical derivative

    sa     : Absolute Salinity                               [g/kg]
    ct     : Conservative Temperature                        [deg C]
    p      : sea pressure                                    [dbar]
    """
    p = npx.asarray(p)  # convert scalar value if necessary
    sa = npx.maximum(1e-1, sa_in)  # prevent division by zero
    ct = npx.maximum(-12, ct_in)  # prevent blowing up for values smaller than -15 degC
    t1 = v45 * ct
    t2 = 0.2e1 * t1
    t3 = v46 * sa
    t4 = 0.5 * v12
    t5 = v14 * ct
    t7 = ct * (v13 + t5)
    t8 = 0.5 * t7
    t11 = sa * (v15 + v16 * ct)
    t12 = 0.5 * t11
    t13 = t4 + t8 + t12
    t15 = v19 * ct
    t19 = v17 + ct * (v18 + t15) + v20 * sa
    t20 = 1.0 / t19
    t24 = v47 + v48 * ct
    t25 = 0.5 * v13
    t26 = 1.0 * t5
    t27 = sa * v16
    t28 = 0.5 * t27
    t29 = t25 + t26 + t28
    t33 = t24 * t13
    t34 = t19**2
    t35 = 1.0 / t34
    t37 = v18 + 2.0 * t15
    t38 = t35 * t37
    t48 = ct * (v44 + t1 + t3)
    t57 = v40 * ct
    t59 = ct * (v39 + t57)
    t64 = t13**2
    t68 = t20 * t29
    t71 = t24 * t64
    t74 = v04 * ct
    t76 = ct * (v03 + t74)
    t79 = v07 * ct
    t82 = npx.sqrt(sa)
    t83 = v11 * ct
    t85 = ct * (v10 + t83)
    t92 = v01 + ct * (v02 + t76) + sa * (v05 + ct * (v06 + t79) + t82 * (v08 + ct * (v09 + t85)))
    t93 = v48 * t92
    t105 = v02 + t76 + ct * (v03 + 2.0 * t74) + sa * (v06 + 2.0 * t79 + t82 * (v09 + t85 + ct * (v10 + 2.0 * t83)))
    t106 = t24 * t105
    t107 = v44 + t2 + t3
    t110 = v43 + t48
    t117 = t24 * t92
    t120 = 4.0 * t71 * t20 - t117 - 2.0 * t110 * t13
    t123 = (
        v38
        + t59
        + ct * (v39 + 2.0 * t57)
        + sa * v42
        + (4.0 * v48 * t64 * t20 + 8.0 * t33 * t68 - 4.0 * t71 * t38 - t93 - t106 - 2.0 * t107 * t13 - 2.0 * t110 * t29)
        * t20
        - t120 * t35 * t37
    )
    t128 = t19 * p
    t130 = p * (1.0 * v12 + 1.0 * t7 + 1.0 * t11 + t128)
    t131 = 1.0 / t92
    t133 = 1.0 + t130 * t131
    t134 = npx.log(t133)
    t143 = v37 + ct * (v38 + t59) + sa * (v41 + v42 * ct) + t120 * t20
    t152 = t37 * p
    t156 = t92**2
    t165 = v25 * ct
    t167 = ct * (v24 + t165)
    t169 = ct * (v23 + t167)
    t175 = v30 * ct
    t177 = ct * (v29 + t175)
    t179 = ct * (v28 + t177)
    t185 = v35 * ct
    t187 = ct * (v34 + t185)
    t189 = ct * (v33 + t187)
    t199 = t13 * t20
    t217 = 2.0 * t117 * t199 - t110 * t92
    t234 = (
        v21
        + ct * (v22 + t169)
        + sa * (v26 + ct * (v27 + t179) + v36 * sa + t82 * (v31 + ct * (v32 + t189)))
        + t217 * t20
    )
    t241 = t64 - t92 * t19
    t242 = npx.sqrt(t241)
    t243 = 1.0 / t242
    t244 = t4 + t8 + t12 - t242
    t245 = 1.0 / t244
    t247 = t4 + t8 + t12 + t242 + t128
    t248 = 1.0 / t247
    t249 = t242 * t245 * t248
    t252 = 1.0 + 2.0 * t128 * t249
    t253 = npx.log(t252)
    t254 = t243 * t253
    t259 = t234 * t19 - t143 * t13
    t264 = t259 * t20
    t272 = 2.0 * t13 * t29 - t105 * t19 - t92 * t37
    t282 = t128 * t242
    t283 = t244**2
    t287 = t243 * t272 / 2.0
    t292 = t247**2
    t305 = (
        0.1e5
        * p
        * (v44 + t2 + t3 - 2.0 * v48 * t13 * t20 - 2.0 * t24 * t29 * t20 + 2.0 * t33 * t38 + 0.5 * v48 * p)
        * t20
        - 0.1e5 * p * (v43 + t48 - 2.0 * t33 * t20 + 0.5 * t24 * p) * t38
        + 0.5e4 * t123 * t20 * t134
        - 0.5e4 * t143 * t35 * t134 * t37
        + 0.5e4 * t143 * t20 * (p * (1.0 * v13 + 2.0 * t5 + 1.0 * t27 + t152) * t131 - t130 / t156 * t105) / t133
        + 0.5e4
        * (
            (
                v22
                + t169
                + ct * (v23 + t167 + ct * (v24 + 2.0 * t165))
                + sa
                * (
                    v27
                    + t179
                    + ct * (v28 + t177 + ct * (v29 + 2.0 * t175))
                    + t82 * (v32 + t189 + ct * (v33 + t187 + ct * (v34 + 2.0 * t185)))
                )
                + (
                    2.0 * t93 * t199
                    + 2.0 * t106 * t199
                    + 2.0 * t117 * t68
                    - 2.0 * t117 * t13 * t35 * t37
                    - t107 * t92
                    - t110 * t105
                )
                * t20
                - t217 * t35 * t37
            )
            * t19
            + t234 * t37
            - t123 * t13
            - t143 * t29
        )
        * t20
        * t254
        - 0.5e4 * t259 * t35 * t254 * t37
        - 0.25e4 * t264 / t242 / t241 * t253 * t272
        + 0.5e4
        * t264
        * t243
        * (
            2.0 * t152 * t249
            + t128 * t243 * t245 * t248 * t272
            - 2.0 * t282 / t283 * t248 * (t25 + t26 + t28 - t287)
            - 2.0 * t282 * t245 / t292 * (t25 + t26 + t28 + t287 + t152)
        )
        / t252
    )

    return t305


@veros_kernel
def gsw_dHdS(sa_in, ct_in, p):
    """
    d/dS of dynamic enthalpy, analytical derivative
    sa     : Absolute Salinity                               [g/kg]
    ct     : Conservative Temperature                        [deg C]
    p      : sea pressure                                    [dbar]
    """
    p = npx.asarray(p)  # convert scalar value if necessary
    sa = npx.maximum(1e-1, sa_in)  # prevent division by zero
    ct = npx.maximum(-12.0, ct_in)  # prevent blowing up for values smaller than -15 degC
    t1 = ct * v46
    t3 = v47 + v48 * ct
    t4 = 0.5 * v15
    t5 = v16 * ct
    t6 = 0.5 * t5
    t7 = t4 + t6
    t13 = v17 + ct * (v18 + v19 * ct) + v20 * sa
    t14 = 1.0 / t13
    t17 = 0.5 * v12
    t20 = ct * (v13 + v14 * ct)
    t21 = 0.5 * t20
    t23 = sa * (v15 + t5)
    t24 = 0.5 * t23
    t25 = t17 + t21 + t24
    t26 = t3 * t25
    t27 = t13**2
    t28 = 1.0 / t27
    t29 = t28 * v20
    t39 = ct * (v44 + v45 * ct + v46 * sa)
    t48 = v42 * ct
    t49 = t14 * t7
    t52 = t25**2
    t53 = t3 * t52
    t58 = ct * (v06 + v07 * ct)
    t59 = npx.sqrt(sa)
    t66 = t59 * (v08 + ct * (v09 + ct * (v10 + v11 * ct)))
    t68 = v05 + t58 + 3.0 / 2.0 * t66
    t69 = t3 * t68
    t72 = v43 + t39
    t86 = v01 + ct * (v02 + ct * (v03 + v04 * ct)) + sa * (v05 + t58 + t66)
    t87 = t3 * t86
    t90 = 4.0 * t53 * t14 - t87 - 2.0 * t72 * t25
    t93 = (
        v41 + t48 + (8.0 * t26 * t49 - 4.0 * t53 * t29 - t69 - 2.0 * t1 * t25 - 2.0 * t72 * t7) * t14 - t90 * t28 * v20
    )
    t98 = t13 * p
    t100 = p * (1.0 * v12 + 1.0 * t20 + 1.0 * t23 + t98)
    t101 = 1.0 / t86
    t103 = 1.0 + t100 * t101
    t104 = npx.log(t103)
    t115 = v37 + ct * (v38 + ct * (v39 + v40 * ct)) + sa * (v41 + t48) + t90 * t14
    t123 = v20 * p
    t127 = t86**2
    t142 = ct * (v27 + ct * (v28 + ct * (v29 + v30 * ct)))
    t143 = v36 * sa
    t151 = v31 + ct * (v32 + ct * (v33 + ct * (v34 + v35 * ct)))
    t152 = t59 * t151
    t158 = t25 * t14
    t174 = 2.0 * t87 * t158 - t72 * t86
    t189 = v21 + ct * (v22 + ct * (v23 + ct * (v24 + v25 * ct))) + sa * (v26 + t142 + t143 + t152) + t174 * t14
    t196 = t52 - t86 * t13
    t197 = npx.sqrt(t196)
    t198 = 1.0 / t197
    t199 = t17 + t21 + t24 - t197
    t200 = 1.0 / t199
    t202 = t17 + t21 + t24 + t197 + t98
    t203 = 1.0 / t202
    t204 = t197 * t200 * t203
    t207 = 1.0 + 2.0 * t98 * t204
    t208 = npx.log(t207)
    t209 = t198 * t208
    t214 = t189 * t13 - t115 * t25
    t219 = t214 * t14
    t227 = 2.0 * t25 * t7 - t68 * t13 - t86 * v20
    t237 = t98 * t197
    t238 = t199**2
    t242 = t198 * t227 / 2.0
    t247 = t202**2
    t260 = (
        0.1e5 * p * (t1 - 2.0 * t3 * t7 * t14 + 2.0 * t26 * t29) * t14
        - 0.1e5 * p * (v43 + t39 - 2.0 * t26 * t14 + 0.5 * t3 * p) * t29
        + 0.5e4 * t93 * t14 * t104
        - 0.5e4 * t115 * t28 * t104 * v20
        + 0.5e4 * t115 * t14 * (p * (1.0 * v15 + 1.0 * t5 + t123) * t101 - t100 / t127 * t68) / t103
        + 0.5e4
        * (
            (
                v26
                + t142
                + t143
                + t152
                + sa * (v36 + 1.0 / t59 * t151 / 2.0)
                + (2.0 * t69 * t158 + 2.0 * t87 * t49 - 2.0 * t87 * t25 * t28 * v20 - t1 * t86 - t72 * t68) * t14
                - t174 * t28 * v20
            )
            * t13
            + t189 * v20
            - t93 * t25
            - t115 * t7
        )
        * t14
        * t209
        - 0.5e4 * t214 * t28 * t209 * v20
        - 0.25e4 * t219 / t197 / t196 * t208 * t227
        + 0.5e4
        * t219
        * t198
        * (
            2.0 * t123 * t204
            + t98 * t198 * t200 * t203 * t227
            - 2.0 * t237 / t238 * t203 * (t4 + t6 - t242)
            - 2.0 * t237 * t200 / t247 * (t4 + t6 + t242 + t123)
        )
        / t207
    )
    return t260