trainer_vit_fixlr.py 4.52 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import torch
import torch.nn as nn

from transformers import Trainer
from transformers.trainer_pt_utils import get_parameter_names
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from typing import Dict, Optional, Sequence


def unwrap_model(model: nn.Module) -> nn.Module:
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
        model (`torch.nn.Module`): The model to unwrap.
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model


class varyTrainer(Trainer):

    def _safe_save(self, output_dir: str):
        """Collects the state dict and dump to disk."""
        state_dict = self.model.state_dict()
        if self.args.should_save:
            cpu_state_dict = {
                key: value.cpu()
                for key, value in state_dict.items()
            }
            del state_dict
            self._save(output_dir, state_dict=cpu_state_dict)  # noqa


    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        if getattr(self.args, 'tune_mm_mlp_adapter', False):
            # Save the model
            _state_dict = state_dict
            if _state_dict is None:
                # Only save the model itself if we are using distributed training
                model_to_save = unwrap_model(self.model)
                _state_dict = model_to_save.state_dict()

            weight_to_save = {}
            keys_to_match = ['mm_projector', 'embed_tokens', 'embed_in']
            for k, v in _state_dict.items():
                if any(key_match in k for key_match in keys_to_match):
                    weight_to_save[k] = v

            current_folder = output_dir.split('/')[-1]
            parent_folder = os.path.dirname(output_dir)
            if current_folder.startswith('checkpoint-'):
                mm_projector_folder = os.path.join(parent_folder, "mm_projector")
                os.makedirs(mm_projector_folder, exist_ok=True)
                torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
            else:
                torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))

        super(varyTrainer, self)._save(output_dir, state_dict)

    def create_optimizer(self):
        """
        Setup the optimizer.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through `optimizers`, or subclass and override this method in a subclass.
        """
        opt_model = self.model

        if self.optimizer is None:
            decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
            optimizer_grouped_parameters = [
                {
                    "params": [
                        p for n, p in opt_model.named_parameters() if 'vision_encoder' in n and n in decay_parameters and p.requires_grad
                    ],
                    "weight_decay": self.args.weight_decay,
                    "lr": self.args.learning_rate,
                },
                {
                    "params": [
                        p for n, p in opt_model.named_parameters() if 'vision_encoder' in n and n not in decay_parameters and p.requires_grad],
                    "weight_decay": 0.0,
                    "lr": self.args.learning_rate,
                },
                {
                    "params": [
                        p for n, p in opt_model.named_parameters() if 'vision_encoder' not in n and n in decay_parameters and p.requires_grad],
                    "weight_decay": self.args.weight_decay,
                    "lr": self.args.learning_rate,
                },
                {
                    "params": [
                        p for n, p in opt_model.named_parameters() if 'vision_encoder' not in n and n not in decay_parameters and p.requires_grad
                    ],
                    "weight_decay": 0.0,
                    "lr": self.args.learning_rate,
                },
            ]
            for idx, group in enumerate(optimizer_grouped_parameters):
                print(idx, len(group['params']), group['lr'])
            optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
            self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

        return self.optimizer