vary_opt.py 14.3 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss

from transformers import AutoConfig, AutoModelForCausalLM, \
                         LlamaConfig, LlamaModel, LlamaForCausalLM, \
                         CLIPVisionModel, CLIPImageProcessor
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast

from vary.utils.constants import *

from vary.model.plug.blip_process import BlipImageEvalProcessor

from vary.model.vision_encoder.sam import build_sam_vit_b


from transformers import OPTConfig, OPTModel, OPTForCausalLM

from vary.model.plug.transforms import train_transform, test_transform



class varyConfig(OPTConfig):
    model_type = "vary"


class varyOPTModel(OPTModel):
    config_class = varyConfig

    def __init__(self, config: OPTConfig):
        super(varyOPTModel, self).__init__(config)


        self.vision_tower_2 = build_sam_vit_b()

        self.mm_projector = nn.Linear(1024, 768)

    def initialize_vision_modules(
        self, 
        vision_tower,
        pretrained_stage1_model=None,
        freeze_vision_tower=False,
        use_im_start_end=False,
        vision_select_layer=-1,
        dtype=torch.float16,
        device="cuda"
    ):

        # 224*224
        # image_processor do not used in opt
        image_processor = CLIPImageProcessor.from_pretrained('/cache/vit-large-patch14')
        # 1024*1024

        image_processor_high = train_transform

        image_token_len = 256

        self.config.vision_tower = vision_tower
        self.config.image_token_len = image_token_len
        self.config.use_im_start_end = True

        self.config.vision_select_layer = vision_select_layer
        self.config.freeze_vision_tower = freeze_vision_tower
        
        return dict(
            image_processor=image_processor,
            image_processor_high=image_processor_high,
            image_token_len=image_token_len,
        )

    def embed_tokens(self, x):
        return self.get_input_embeddings()(x)

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        # HACK: replace back original embeddings for LLaVA pretraining
        # orig_embeds_params = getattr(self, 'orig_embeds_params', None)
        # if orig_embeds_params is not None:
        #     with torch.no_grad():
        #         self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
            # inputs_embeds = self.wte(input_ids)


        vision_tower = getattr(self, 'vision_tower_2', None)


        if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:

            use_im_start_end = getattr(self.config, "use_im_start_end", -1)

            vision_select_layer = getattr(self.config, "vision_select_layer", -1)
            im_patch_token = getattr(self.config, "im_patch_token", -1)
            im_start_token = getattr(self.config, "im_start_token", -1)
            im_end_token = getattr(self.config, "im_end_token", -1)
            freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)


            image_features = []
            for image in images:

                with torch.set_grad_enabled(True):
                    cnn_feature = vision_tower(image[1])
                    cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1)
                    image_feature_final = cnn_feature

                image_features.append(image_feature_final)

            if type(images) is list:
                image_features = [self.mm_projector(image_feature) for image_feature in image_features]
            else:
                # image_features = self.mm_projector(image_features)
                raise NotImplementedError
            
            # dummy_image_features = torch.zeros(1024, 1664, device=inputs_embeds.device, dtype=inputs_embeds.dtype).permute(0, 2, 1).reshape(dummy_image_features.shape[0], -1, 32, 32)
            # VIT 1024; CNN:1024
            dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
            dummy_image_features = self.mm_projector(dummy_image_features)

            use_im_start_end = True
            new_input_embeds = []
            for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
                if (cur_input_ids == im_patch_token).sum() == 0:
                    # multimodal LLM, but the current sample is not multimodal
                    cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
                    new_input_embeds.append(cur_input_embeds)
                    continue

                if use_im_start_end:
                    if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
                        raise ValueError("The number of image start tokens and image end tokens should be the same.")
                    
                    image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
                    for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
                        per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
                        num_patches = per_cur_image_features.shape[0]
                        # print(cur_input_ids)
                        if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
                            raise ValueError("The image end token should follow the image start token.")

                        cur_input_embeds = torch.cat(
                            (
                                cur_input_embeds[:image_start_token_pos+1], 
                                per_cur_image_features, 
                                cur_input_embeds[image_start_token_pos + num_patches + 1:]
                            ), 
                            dim=0
                        )


                    new_input_embeds.append(cur_input_embeds)
                else:
                    raise NotImplementedError

            inputs_embeds = torch.stack(new_input_embeds, dim=0)


        return super(varyOPTModel, self).forward(
            input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
            inputs_embeds=inputs_embeds, use_cache=use_cache,
            output_attentions=output_attentions, output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )


class varyOPTForCausalLM(OPTForCausalLM):
    config_class = varyConfig
    # supports_gradient_checkpointing = True

    def __init__(self, config):
        super(OPTForCausalLM, self).__init__(config)
        self.model = varyOPTModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    # def _set_gradient_checkpointing(self, module, value=False):
    #     if isinstance(module, varyQwenModel):
    #         module.gradient_checkpointing = value



    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
        
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        # print(input_ids)
        # print(len(images))

        outputs = self.model(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            images=images,
            return_dict=return_dict
            
        )




        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states).contiguous()

        # logits

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
    ):
        token_type_ids = kwargs.get("token_type_ids", None)
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
                "images": kwargs.get("images", None),
            }
        )
        return model_inputs

    def initialize_vision_tokenizer(
        self, 
        tokenizer, 
        freeze_lm_model=False, 
        pretrained_stage1_model=None,
        device="cuda"
    ):
        config = self.get_model().config

        # add image patch token <image>
        tokenizer.add_tokens("</s>", special_tokens=True)
        self.resize_token_embeddings(len(tokenizer))

        tokenizer.add_tokens(DEFAULT_IMAGE_PATCH_TOKEN, special_tokens=True)
        self.resize_token_embeddings(len(tokenizer))
        config.im_patch_token = tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_PATCH_TOKEN)


        config.use_im_start_end = True

        # add image start token <im_start> and end token <im_end>
        if config.use_im_start_end:
            num_new_tokens = 2
            tokenizer.add_tokens(DEFAULT_IM_START_TOKEN , special_tokens=True)
            tokenizer.add_tokens(DEFAULT_IM_END_TOKEN , special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))
            config.im_start_token = tokenizer.convert_tokens_to_ids(DEFAULT_IM_START_TOKEN)
            config.im_end_token =  tokenizer.convert_tokens_to_ids(DEFAULT_IM_END_TOKEN)

            # config.im_start_token, config.im_end_token = 151857, 151858

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg



AutoConfig.register("vary", varyConfig)
AutoModelForCausalLM.register(varyConfig, varyOPTForCausalLM)