eval_unimernet_base.log 3.36 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
CustomVisionEncoderDecoderModel init
VariableUnimerNetModel init
VariableUnimerNetPatchEmbeddings init
VariableUnimerNetModel init
VariableUnimerNetPatchEmbeddings init
CustomMBartForCausalLM init
CustomMBartDecoder init
arch_name:unimernet
model_type:unimernet
checkpoint:
====================================================================================================
Device:cuda
Load model: 25.267s
len_gts:6762, len_preds=6762
norm_gts[0]:S\sim\tilde{\psi}Q_{o}\tilde{\psi}+g_{s}^{1/2}\tilde{\psi}^{3}+\tilde{\phi}Q_{c}\tilde{\phi}+g_{s}\tilde{\phi}^{3}+\tilde{\phi}B(g_{s}^{1/2}\tilde{\psi})+\cdots.
norm_preds[0]:S\sim\tilde{\psi}Q_{o}\tilde{\psi}+g_{s}^{1/2}\tilde{\psi}^{3}+\tilde{\phi}Q_{c}\tilde{\phi}+g_{s}\tilde{\phi}^{3}+\tilde{\phi}B(g_{s}^{1/2}\tilde{\psi})+\cdots.
Evaluation Set:Simple Print Expression(SPE)
Inference Time: 561.8906960487366s
  bleu ⬆    meteor ⬆     edit ⬇
--------  ----------  ---------
0.915231    0.901589  0.0600379
====================================================================================================
len_gts:5921, len_preds=5921
norm_gts[0]:\begin{array}{r l}{\mathcal{L}(\{\mathbf{u,v,w,z,x}\},\{\boldsymbol{\kappa,\lambda,\mu,\nu}\})=\frac{1}{2}\|\mathbf{y-Cu}\|_{2}^{2}}&{+\tau_{1}\|\mathbf{v}\|_{1}+\tau_{2}\|\mathbf{w}\|_{1}}\\ &{+\frac{\rho_{1}}{2}\|\mathbf{Ax-u}\|_{2}^{2}+\boldsymbol{\kappa}^{\top}(\mathbf{Ax-u})}\\ &{+\frac{\rho_{2}}{2}\|\mathbf{x-v}\|_{2}^{2}+\boldsymbol{\lambda}^{\top}(\mathbf{x-v})}\\ &{+\frac{\rho_{3}}{2}\|\mathbf{Dx-w}\|_{2}^{2}+\boldsymbol{\mu}^{\top}(\mathbf{Dx-w})}\\ &{+\frac{\rho_{4}}{2}\|\mathbf{x-z}\|_{2}^{2}+\boldsymbol{\nu}^{\top}(\mathbf{x-z})}\\ &{+\mathcal{I}_{+}(\mathbf{z})}\end{array}
norm_preds[0]:\begin{array}{r l}{\mathcal{L}(\{\mathbf{u},\mathbf{v},\mathbf{w},\mathbf{z},\mathbf{x}\},\{\kappa,\lambda,\mu,\nu\})=\frac{1}{2}\|\mathbf{y}-\mathbf{Cu}\|_{2}^{2}}&{+\tau_{1}\|\mathbf{v}\|_{1}+\tau_{2}\|\mathbf{w}\|_{1}}\\ &{+\frac{\rho_{1}}{2}\|\mathbf{Ax}-\mathbf{u}\|_{2}^{2}+\kappa^{\top}(\mathbf{Ax}-\mathbf{u})}\\ &{+\frac{\rho_{2}}{2}\|\mathbf{x}-\mathbf{v}\|_{2}^{2}+\lambda^{\top}(\mathbf{x}-\mathbf{v})}\\ &{+\frac{\rho_{3}}{2}\|\mathbf{Dx}-\mathbf{w}\|_{2}^{2}+\mu^{\top}(\mathbf{Dx}-\mathbf{w})}\\ &{+\frac{\rho_{4}}{2}\|\mathbf{x}-\mathbf{z}\|_{2}^{2}+\nu^{\top}(\mathbf{x}-\mathbf{z})}\\ &{+\mathcal{I}_{+}(\mathbf{z})}\end{array}
Evaluation Set:Complex Print Expression(CPE)
Inference Time: 1556.0770707130432s
  bleu ⬆    meteor ⬆     edit ⬇
--------  ----------  ---------
0.924907    0.901307  0.0561145
====================================================================================================
len_gts:4742, len_preds=4742
norm_gts[0]:F_{i}[z](x,y)=f_{i}(x,y,z)\ i=1,\ldots,n,
norm_preds[0]:F_{i}[z](x,y)=f_{i}(x,y,z)\ i=1,\ldots,n,
Evaluation Set:Screen Capture Expression(SCE)
Inference Time: 1822.9997293949127s
  bleu ⬆    meteor ⬆    edit ⬇
--------  ----------  --------
0.626271    0.677379  0.223768
====================================================================================================
len_gts:6332, len_preds=6332
norm_gts[0]:b_{n+1}-b_{n}=-1
norm_preds[0]:b_{n+1}-b_{n}=-1.
Evaluation Set:Handwritten Expression(HWE)
Inference Time: 1900.8741807937622s
  bleu ⬆    meteor ⬆     edit ⬇
--------  ----------  ---------
0.894818    0.853878  0.0716135
====================================================================================================