unimernet_tiny.yaml 1.61 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
model:
  arch: unimernet
  model_type: unimernet
  model_config:
    model_name: ./models/unimernet_tiny
    max_seq_len: 1536


  load_pretrained: False
  load_finetuned: True
  finetuned: './models/unimernet_tiny.pth'


datasets:

  formula_rec_train:
    sample_ratio: 1
    vis_processor:
      train:
        name: "formula_image_train"
        image_size:
          - 192
          - 672
    text_processor:
      train:
        name: "blip_caption"
        max_words: 1536

    build_info:
      # unimath_train
      images: ./data/UniMath1M/train/unimath_train
      annotation: ./data/UniMath1M/train/unimath_train.txt
      
  formula_rec_eval:
    vis_processor:
      eval:
        name: "formula_image_eval"
        image_size:
          - 192
          - 672
    text_processor:
      eval:
        name: "blip_caption"
        max_words: 1536

    build_info:
      images: ./data/UniMER-Test/cpe
      annotation: ./data/UniMER-Test/cpe.txt

run:
  runner: runner_iter
  task: unimernet_train
  # optimizer
  lr_sched: "linear_warmup_cosine_lr"
  init_lr: 1e-4
  min_lr: 1e-8
  warmup_lr: 1e-5
  weight_decay: 0.05
  batch_size_train: 8
  batch_size_eval: 8
  accum_grad_iters: 1
  num_workers: 8
  warmup_steps: 5000
  iters_per_inner_epoch: 20000
  max_iters: 300000
  milestone: [1]

  seed: 42
  

  output_dir: "../outputs_unimernet/unimernet_tiny"

  amp: True
  resume_ckpt_path: null

  evaluate: False
  train_splits: [ "train" ]
  valid_splits: [ "eval" ]

  device: "cuda"
  world_size: 1
  dist_url: "env://"
  distributed: True
  distributed_type: ddp  # or fsdp when train llm

  generate_cfg:
    temperature: 0.0