geometry_utils.py 6.62 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import numpy as np
from typing import List, Tuple, Sequence, Optional


def get_rotation_from_axis_theta(axis: Sequence[float], theta: float) -> np.ndarray:
    """
        Calculates a rotation matrix given an axis and angle.

        Parameters
        ----------
        axis : sequence of float
            The rotation axis.
        theta : float
            The rotation angle.

        Returns
        -------
        rot_mat : np.ndarray
            The rotation matrix.
    """
    assert len(axis) == 3
    k_x, k_y, k_z = axis
    c, s = np.cos(theta), np.sin(theta)
    r_00 = c + (k_x ** 2) * (1 - c)
    r_11 = c + (k_y ** 2) * (1 - c)
    r_22 = c + (k_z ** 2) * (1 - c)
    r_01 = -s * k_z + (1 - c) * k_x * k_y
    r_10 = s * k_z + (1 - c) * k_x * k_y
    r_20 = -s * k_y + (1 - c) * k_x * k_z
    r_02 = s * k_y + (1 - c) * k_x * k_z
    r_12 = -s * k_x + (1 - c) * k_y * k_z
    r_21 = s * k_x + (1 - c) * k_y * k_z
    return np.array([
        [r_00, r_01, r_02],
        [r_10, r_11, r_12],
        [r_20, r_21, r_22],
    ], dtype=np.float64)


STANDARD_AXES_C = np.array([
    [0, 0, 1],
], dtype=np.float64)

STANDARD_AXES_D = np.array([
    [0, 0, 1],
    [0, 1, 0],
], dtype=np.float64)

NUM_SYM_T = [3, 2, 2]
STANDARD_AXES_T = np.array([
    [1 / np.sqrt(3), 1 / np.sqrt(3), 1 / np.sqrt(3)],
    [0, 1, 0],
    [1, 0, 0],
], dtype=np.float64)

NUM_SYM_O = [3, 4, 2]
STANDARD_AXES_O = np.array([
    [1 / np.sqrt(3), 1 / np.sqrt(3), 1 / np.sqrt(3)],
    [0, 0, 1],
    [1, 0, 0],
], dtype=np.float64)

NUM_SYM_I = [3, 5, 2, 2]
STANDARD_AXES_I = np.array([
    [0, -1 / np.sqrt(3), np.sqrt(2) / np.sqrt(3)],
    [0, 0, 1],
    [1 / 3, -2 * np.sqrt(2) / 3, 0],
    [0, -np.sqrt(2) / np.sqrt(3), 1 / np.sqrt(3)],
], dtype=np.float64)


def get_standard_syms_axes(symmetry: str) -> Tuple[List[int], np.ndarray]:
    """
        Get the information of spin axes of a symmetry type, including the axis vectors and their cyclic numbers.

        Parameters
        ----------
        symmetry : str
            Symmetry type.

        Returns
        -------
        list_num_sym : List of int
            The axes' cyclic numbers.
        standard_axes: np.ndarray
            The spin axes (normalized).
    """
    if symmetry.startswith('C'):
        list_num_sym = [int(symmetry[1:])]
        standard_axes = STANDARD_AXES_C
    elif symmetry.startswith('D'):
        list_num_sym = [int(symmetry[1:]), 2]
        standard_axes = STANDARD_AXES_D
    elif symmetry == 'T':
        list_num_sym = NUM_SYM_T
        standard_axes = STANDARD_AXES_T
    elif symmetry == 'O':
        list_num_sym = NUM_SYM_O
        standard_axes = STANDARD_AXES_O
    elif symmetry == 'I':
        list_num_sym = NUM_SYM_I
        standard_axes = STANDARD_AXES_I
    else:
        assert False, f'{symmetry}'
    return list_num_sym, standard_axes


def get_num_AU(symmetry: Optional[str]):
    """
        The get_num_AU function takes a string as input and returns the number of
            asymmetric units in that symmetry group.

        Parameters
        ----------
        symmetry : str, optional
            Symmetry type.

        Returns
        -------
        num_AU : int
            Number of asymmetric units.
    """
    if symmetry is None:
        return 1
    elif symmetry.startswith('C'):
        return int(symmetry[1:])
    elif symmetry.startswith('D'):
        return int(symmetry[1:]) * 2
    elif symmetry == 'T':
        return 12
    elif symmetry == 'O':
        return 24
    elif symmetry == 'I':
        return 60
    elif symmetry == 'H':
        raise NotImplementedError("helical structures not supported currently.")
    else:
        raise ValueError(f"unknown symmetry type {symmetry}")


def rotation_z(theta):
    ca = np.cos(theta)
    sa = np.sin(theta)
    ret = np.array([[ ca, -sa,  0.,  0.],
                    [ sa,  ca,  0.,  0.],
                    [ 0.,  0.,  1.,  0.],
                    [ 0.,  0.,  0.,  1.]])
    ret[np.abs(ret) < 1e-10] = 0
    return ret


def get_transform_C(grpnum):
    interval = 2 * np.pi / grpnum
    ret = np.stack([rotation_z(theta).astype(float) for theta in np.arange(0, 2 * np.pi, step=interval)])
    return ret


def get_transform_D(grpnum):
    assert grpnum % 2 == 0
    c_transform = get_transform_C(grpnum // 2)
    rot_y = np.array([[-1.,  0.,  0.,  0.],
                      [ 0.,  1.,  0.,  0.],
                      [ 0.,  0., -1.,  0.],
                      [ 0.,  0.,  0.,  1.]])
    ret = np.concatenate([c_transform, c_transform @ rot_y], axis=0)
    return ret


def combine_rigid_groups(rigid_groups: List[List[np.ndarray]]) -> np.ndarray:
    list_rigid = [np.eye(4, dtype=np.float64)]
    for rigid_group in rigid_groups:
        temp_list_rigid = []
        for r1 in list_rigid:
            for r2 in rigid_group:
                temp_list_rigid.append(r2 @ r1)
        list_rigid = temp_list_rigid
    return np.stack(list_rigid)


def get_transform_TOI(symmetry: str) -> np.ndarray:
    list_num_sym, standard_axes = get_standard_syms_axes(symmetry)
    n = len(list_num_sym)
    rigid_groups = []
    for i in range(n):
        num_sym, axis = list_num_sym[i], standard_axes[i, :]
        angles = [j * 2 * np.pi / num_sym for j in range(num_sym)]
        rigid_group = []
        for angle in angles:
            rigid = np.eye(4, dtype=np.float64)
            rigid[:3, :3] = get_rotation_from_axis_theta(axis, angle)
            rigid_group.append(rigid)
        rigid_groups.append(rigid_group)
    if symmetry == 'I':
        xs = [0, 3, 2, 1]
        rigid_groups = [rigid_groups[i] for i in xs]
    return combine_rigid_groups(rigid_groups)


TRANSFORM_T = get_transform_TOI('T')
TRANSFORM_O = get_transform_TOI('O')
TRANSFORM_I = get_transform_TOI('I')
assert TRANSFORM_T.shape[0] == 12
assert TRANSFORM_O.shape[0] == 24
assert TRANSFORM_I.shape[0] == 60


def get_transform(symmetry: str) -> np.ndarray:
    """
        Get symmetry operators of the given symmetry.

        Parameters
        ----------
        symmetry : str
            Symmetry type.

        Returns
        -------
        sym_opers: np.ndarray
            (N * 4 * 4) Symmetry operators.
    """
    if symmetry is None:
        ret = get_transform_C(1)
    elif symmetry.startswith('C'):
        ret = get_transform_C(get_num_AU(symmetry))
    elif symmetry.startswith('D'):
        ret = get_transform_D(get_num_AU(symmetry))
    elif symmetry == 'T':
        ret = TRANSFORM_T
    elif symmetry == 'O':
        ret = TRANSFORM_O
    elif symmetry == 'I':
        ret = TRANSFORM_I
    elif symmetry == 'H':
        raise NotImplementedError("helical structures not supported currently.")
    else:
        raise ValueError(f"unknown symmetry type {symmetry}")
    return ret