pipeline.py 11 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#            http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for building the input features for the unifold model."""

import os
from typing import Any, Mapping, MutableMapping, Optional, Sequence, Union
from absl import logging
from unifold.data import residue_constants
from unifold.msa import msa_identifiers
from unifold.msa import parsers
from unifold.msa import templates
from unifold.msa.tools import hhblits
from unifold.msa.tools import hhsearch
from unifold.msa.tools import hmmsearch
from unifold.msa.tools import jackhmmer
import numpy as np


FeatureDict = MutableMapping[str, np.ndarray]
TemplateSearcher = Union[hhsearch.HHSearch, hmmsearch.Hmmsearch]


def make_sequence_features(
    sequence: str, description: str, num_res: int
) -> FeatureDict:
    """Constructs a feature dict of sequence features."""
    features = {}
    features["aatype"] = residue_constants.sequence_to_onehot(
        sequence=sequence,
        mapping=residue_constants.restype_order_with_x,
        map_unknown_to_x=True,
    )
    features["between_segment_residues"] = np.zeros((num_res,), dtype=np.int32)
    features["domain_name"] = np.array([description.encode("utf-8")], dtype=np.object_)
    features["residue_index"] = np.array(range(num_res), dtype=np.int32)
    features["seq_length"] = np.array([num_res] * num_res, dtype=np.int32)
    features["sequence"] = np.array([sequence.encode("utf-8")], dtype=np.object_)
    return features


def make_msa_features(msas: Sequence[parsers.Msa]) -> FeatureDict:
    """Constructs a feature dict of MSA features."""
    if not msas:
        raise ValueError("At least one MSA must be provided.")

    int_msa = []
    deletion_matrix = []
    species_ids = []
    seen_sequences = set()
    for msa_index, msa in enumerate(msas):
        if not msa:
            raise ValueError(f"MSA {msa_index} must contain at least one sequence.")
        for sequence_index, sequence in enumerate(msa.sequences):
            if sequence in seen_sequences:
                continue
            seen_sequences.add(sequence)
            int_msa.append(
                [residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence]
            )
            deletion_matrix.append(msa.deletion_matrix[sequence_index])
            identifiers = msa_identifiers.get_identifiers(
                msa.descriptions[sequence_index]
            )
            species_ids.append(identifiers.species_id.encode("utf-8"))

    num_res = len(msas[0].sequences[0])
    num_alignments = len(int_msa)
    features = {}
    features["deletion_matrix_int"] = np.array(deletion_matrix, dtype=np.int32)
    features["msa"] = np.array(int_msa, dtype=np.int32)
    features["num_alignments"] = np.array([num_alignments] * num_res, dtype=np.int32)
    features["msa_species_identifiers"] = np.array(species_ids, dtype=np.object_)
    return features


def run_msa_tool(
    msa_runner,
    input_fasta_path: str,
    msa_out_path: str,
    msa_format: str,
    use_precomputed_msas: bool,
) -> Mapping[str, Any]:
    """Runs an MSA tool, checking if output already exists first."""
    if not use_precomputed_msas or not os.path.exists(msa_out_path):
        result = msa_runner.query(input_fasta_path)[0]
        with open(msa_out_path, "w") as f:
            f.write(result[msa_format])
    else:
        logging.warning("Reading MSA from file %s", msa_out_path)
        with open(msa_out_path, "r") as f:
            result = {msa_format: f.read()}
    return result


class DataPipeline:
    """Runs the alignment tools and assembles the input features."""

    def __init__(
        self,
        jackhmmer_binary_path: str,
        hhblits_binary_path: str,
        uniref90_database_path: str,
        mgnify_database_path: str,
        bfd_database_path: Optional[str],
        uniclust30_database_path: Optional[str],
        small_bfd_database_path: Optional[str],
        uniprot_database_path: Optional[str],
        template_searcher: TemplateSearcher,
        template_featurizer: templates.TemplateHitFeaturizer,
        use_small_bfd: bool,
        mgnify_max_hits: int = 501,
        uniref_max_hits: int = 10000,
        use_precomputed_msas: bool = False,
    ):
        """Initializes the data pipeline."""
        self._use_small_bfd = use_small_bfd
        self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
            binary_path=jackhmmer_binary_path, database_path=uniref90_database_path
        )
        if use_small_bfd:
            self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer(
                binary_path=jackhmmer_binary_path, database_path=small_bfd_database_path
            )
        else:
            self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
                binary_path=hhblits_binary_path,
                databases=[bfd_database_path, uniclust30_database_path],
            )
        self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
            binary_path=jackhmmer_binary_path, database_path=mgnify_database_path
        )
        self.jackhmmer_uniprot_runner = jackhmmer.Jackhmmer(
            binary_path=jackhmmer_binary_path, database_path=uniprot_database_path
        )
        self.template_searcher = template_searcher
        self.template_featurizer = template_featurizer
        self.mgnify_max_hits = mgnify_max_hits
        self.uniref_max_hits = uniref_max_hits
        self.use_precomputed_msas = use_precomputed_msas

    def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
        """Runs alignment tools on the input sequence and creates features."""
        with open(input_fasta_path) as f:
            input_fasta_str = f.read()
        input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
        if len(input_seqs) != 1:
            raise ValueError(
                f"More than one input sequence found in {input_fasta_path}."
            )
        input_sequence = input_seqs[0]
        input_description = input_descs[0]
        num_res = len(input_sequence)

        uniref90_out_path = os.path.join(msa_output_dir, "uniref90_hits.sto")
        jackhmmer_uniref90_result = run_msa_tool(
            self.jackhmmer_uniref90_runner,
            input_fasta_path,
            uniref90_out_path,
            "sto",
            self.use_precomputed_msas,
        )
        mgnify_out_path = os.path.join(msa_output_dir, "mgnify_hits.sto")
        jackhmmer_mgnify_result = run_msa_tool(
            self.jackhmmer_mgnify_runner,
            input_fasta_path,
            mgnify_out_path,
            "sto",
            self.use_precomputed_msas,
        )

        msa_for_templates = jackhmmer_uniref90_result["sto"]
        msa_for_templates = parsers.truncate_stockholm_msa(
            msa_for_templates, max_sequences=self.uniref_max_hits
        )
        msa_for_templates = parsers.deduplicate_stockholm_msa(msa_for_templates)
        msa_for_templates = parsers.remove_empty_columns_from_stockholm_msa(
            msa_for_templates
        )

        if self.template_searcher.input_format == "sto":
            pdb_templates_result = self.template_searcher.query(msa_for_templates)
        elif self.template_searcher.input_format == "a3m":
            uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(msa_for_templates)
            pdb_templates_result = self.template_searcher.query(uniref90_msa_as_a3m)
        else:
            raise ValueError(
                "Unrecognized template input format: "
                f"{self.template_searcher.input_format}"
            )

        pdb_hits_out_path = os.path.join(
            msa_output_dir, f"pdb_hits.{self.template_searcher.output_format}"
        )
        with open(pdb_hits_out_path, "w") as f:
            f.write(pdb_templates_result)

        uniref90_msa = parsers.parse_stockholm(jackhmmer_uniref90_result["sto"])
        uniref90_msa = uniref90_msa.truncate(max_seqs=self.uniref_max_hits)
        mgnify_msa = parsers.parse_stockholm(jackhmmer_mgnify_result["sto"])
        mgnify_msa = mgnify_msa.truncate(max_seqs=self.mgnify_max_hits)

        pdb_template_hits = self.template_searcher.get_template_hits(
            output_string=pdb_templates_result, input_sequence=input_sequence
        )

        if self._use_small_bfd:
            bfd_out_path = os.path.join(msa_output_dir, "small_bfd_hits.sto")
            jackhmmer_small_bfd_result = run_msa_tool(
                self.jackhmmer_small_bfd_runner,
                input_fasta_path,
                bfd_out_path,
                "sto",
                self.use_precomputed_msas,
            )
            bfd_msa = parsers.parse_stockholm(jackhmmer_small_bfd_result["sto"])
        else:
            bfd_out_path = os.path.join(msa_output_dir, "bfd_uniclust_hits.a3m")
            hhblits_bfd_uniclust_result = run_msa_tool(
                self.hhblits_bfd_uniclust_runner,
                input_fasta_path,
                bfd_out_path,
                "a3m",
                self.use_precomputed_msas,
            )
            bfd_msa = parsers.parse_a3m(hhblits_bfd_uniclust_result["a3m"])

        templates_result = self.template_featurizer.get_templates(
            query_sequence=input_sequence, hits=pdb_template_hits
        )

        sequence_features = make_sequence_features(
            sequence=input_sequence, description=input_description, num_res=num_res
        )

        msa_features = make_msa_features((uniref90_msa, bfd_msa, mgnify_msa))

        logging.info("Uniref90 MSA size: %d sequences.", len(uniref90_msa))
        logging.info("BFD MSA size: %d sequences.", len(bfd_msa))
        logging.info("MGnify MSA size: %d sequences.", len(mgnify_msa))
        logging.info(
            "Final (deduplicated) MSA size: %d sequences.",
            msa_features["num_alignments"][0],
        )
        logging.info(
            "Total number of templates (NB: this can include bad "
            "templates and is later filtered to top 4): %d.",
            templates_result.features["template_domain_names"].shape[0],
        )

        return {**sequence_features, **msa_features, **templates_result.features}

    def process_uniprot(
        self, input_fasta_path: str, msa_output_dir: str
    ) -> FeatureDict:
        uniprot_path = os.path.join(msa_output_dir, "uniprot_hits.sto")
        uniprot_result = run_msa_tool(
            self.jackhmmer_uniprot_runner,
            input_fasta_path,
            uniprot_path,
            "sto",
            self.use_precomputed_msas,
        )
        msa = parsers.parse_stockholm(uniprot_result["sto"])
        msa = msa.truncate(max_seqs=50000)
        all_seq_dict = make_msa_features([msa])
        return all_seq_dict