triangle_multiplication.py 5.39 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from functools import partialmethod
from typing import Optional, List
import torch
import torch.nn as nn
from .common import Linear
from unicore.utils import (
    permute_final_dims,
)
from unicore.modules import (
    LayerNorm,
)


class TriangleMultiplication(nn.Module):
    def __init__(self, d_pair, d_hid, outgoing=True):
        super(TriangleMultiplication, self).__init__()
        self.outgoing = outgoing

        self.linear_ab_p = Linear(d_pair, d_hid * 2)
        self.linear_ab_g = Linear(d_pair, d_hid * 2, init="gating")

        self.linear_g = Linear(d_pair, d_pair, init="gating")
        self.linear_z = Linear(d_hid, d_pair, init="final")

        self.layer_norm_in = LayerNorm(d_pair)
        self.layer_norm_out = LayerNorm(d_hid)

        self._alphafold_original_mode = False

    def _chunk_2d(
        self,
        z: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        block_size: int = None,
    ) -> torch.Tensor:

        # avoid too small chunk size
        # block_size = max(block_size, 256)
        new_z = z.new_zeros(z.shape)
        dim1 = z.shape[-3]

        def _slice_linear(z, linear: Linear, a=True):
            d_hid = linear.bias.shape[0] // 2
            index = 0 if a else d_hid
            p = (
                nn.functional.linear(z, linear.weight[index : index + d_hid])
                + linear.bias[index : index + d_hid]
            )
            return p

        def _chunk_projection(z, mask, a=True):
            p = _slice_linear(z, self.linear_ab_p, a) * mask
            p *= torch.sigmoid(_slice_linear(z, self.linear_ab_g, a))
            return p

        num_chunk = (dim1 + block_size - 1) // block_size
        for i in range(num_chunk):
            chunk_start = i * block_size
            chunk_end = min(chunk_start + block_size, dim1)
            if self.outgoing:
                a_chunk = _chunk_projection(
                    z[..., chunk_start:chunk_end, :, :],
                    mask[..., chunk_start:chunk_end, :, :],
                    a=True,
                )
                a_chunk = permute_final_dims(a_chunk, (2, 0, 1))
            else:
                a_chunk = _chunk_projection(
                    z[..., :, chunk_start:chunk_end, :],
                    mask[..., :, chunk_start:chunk_end, :],
                    a=True,
                )
                a_chunk = a_chunk.transpose(-1, -3)

            for j in range(num_chunk):
                j_chunk_start = j * block_size
                j_chunk_end = min(j_chunk_start + block_size, dim1)
                if self.outgoing:
                    b_chunk = _chunk_projection(
                        z[..., j_chunk_start:j_chunk_end, :, :],
                        mask[..., j_chunk_start:j_chunk_end, :, :],
                        a=False,
                    )
                    b_chunk = b_chunk.transpose(-1, -3)
                else:
                    b_chunk = _chunk_projection(
                        z[..., :, j_chunk_start:j_chunk_end, :],
                        mask[..., :, j_chunk_start:j_chunk_end, :],
                        a=False,
                    )
                    b_chunk = permute_final_dims(b_chunk, (2, 0, 1))
                x_chunk = torch.matmul(a_chunk, b_chunk)
                del b_chunk
                x_chunk = permute_final_dims(x_chunk, (1, 2, 0))
                x_chunk = self.layer_norm_out(x_chunk)
                x_chunk = self.linear_z(x_chunk)
                x_chunk *= torch.sigmoid(
                    self.linear_g(
                        z[..., chunk_start:chunk_end, j_chunk_start:j_chunk_end, :]
                    )
                )
                new_z[
                    ..., chunk_start:chunk_end, j_chunk_start:j_chunk_end, :
                ] = x_chunk
                del x_chunk
            del a_chunk
        return new_z

    def forward(
        self,
        z: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        block_size=None,
    ) -> torch.Tensor:

        mask = mask.unsqueeze(-1)
        if not self._alphafold_original_mode:
            # divided by 1/sqrt(dim) for numerical stability
            mask = mask * (mask.shape[-2] ** -0.5)

        z = self.layer_norm_in(z)
        if not self.training and block_size is not None:
            return self._chunk_2d(z, mask, block_size=block_size)

        g = nn.functional.linear(z, self.linear_g.weight)
        if self.training:
            ab = self.linear_ab_p(z) * mask * torch.sigmoid(self.linear_ab_g(z))
        else:
            ab = self.linear_ab_p(z)
            ab *= mask
            ab *= torch.sigmoid(self.linear_ab_g(z))
        a, b = torch.chunk(ab, 2, dim=-1)
        del z, ab

        if self.outgoing:
            a = permute_final_dims(a, (2, 0, 1))
            b = b.transpose(-1, -3)
        else:
            b = permute_final_dims(b, (2, 0, 1))
            a = a.transpose(-1, -3)
        x = torch.matmul(a, b)
        del a, b

        x = permute_final_dims(x, (1, 2, 0))

        x = self.layer_norm_out(x)
        x = nn.functional.linear(x, self.linear_z.weight)
        return x, g

    def get_output_bias(self):
        return self.linear_z.bias, self.linear_g.bias


class TriangleMultiplicationOutgoing(TriangleMultiplication):
    __init__ = partialmethod(TriangleMultiplication.__init__, outgoing=True)


class TriangleMultiplicationIncoming(TriangleMultiplication):
    __init__ = partialmethod(TriangleMultiplication.__init__, outgoing=False)