homo_search.py 9.89 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright 2022 DP Technology
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Run CPU MSA & template searching to get pickled features."""
import json
import os
import pickle
from pathlib import Path
import shutil
import time
import gzip

from absl import app
from absl import flags
from absl import logging

from unifold.data.utils import compress_features
from unifold.msa import parsers
from unifold.msa import pipeline
from unifold.msa import templates
from unifold.msa.utils import divide_multi_chains
from unifold.msa.tools import hmmsearch


logging.set_verbosity(logging.INFO)

flags.DEFINE_string(
    "fasta_path",
    None,
    "Path to FASTA file, If a FASTA file contains multiple sequences, "
    "then it will be divided into several single sequences. ",
)

flags.DEFINE_string(
    "output_dir", None, "Path to a directory that will " "store the results."
)
flags.DEFINE_string(
    "jackhmmer_binary_path",
    shutil.which("jackhmmer"),
    "Path to the JackHMMER executable.",
)
flags.DEFINE_string(
    "hhblits_binary_path", shutil.which("hhblits"), "Path to the HHblits executable."
)
flags.DEFINE_string(
    "hhsearch_binary_path", shutil.which("hhsearch"), "Path to the HHsearch executable."
)
flags.DEFINE_string(
    "hmmsearch_binary_path",
    shutil.which("hmmsearch"),
    "Path to the hmmsearch executable.",
)
flags.DEFINE_string(
    "hmmbuild_binary_path", shutil.which("hmmbuild"), "Path to the hmmbuild executable."
)
flags.DEFINE_string(
    "kalign_binary_path", shutil.which("kalign"), "Path to the Kalign executable."
)
flags.DEFINE_string(
    "uniref90_database_path",
    None,
    "Path to the Uniref90 database for use by JackHMMER.",
)
flags.DEFINE_string(
    "mgnify_database_path", None, "Path to the MGnify database for use by JackHMMER."
)
flags.DEFINE_string(
    "bfd_database_path", None, "Path to the BFD database for use by HHblits."
)
flags.DEFINE_string(
    "small_bfd_database_path",
    None,
    'Path to the small version of BFD used with the "reduced_dbs" preset.',
)
flags.DEFINE_string(
    "uniclust30_database_path",
    None,
    "Path to the Uniclust30 " "database for use by HHblits.",
)
flags.DEFINE_string(
    "uniprot_database_path",
    None,
    "Path to the Uniprot database for use by JackHMMer.",
)
flags.DEFINE_string(
    "pdb_seqres_database_path",
    None,
    "Path to the PDB seqres database for use by hmmsearch.",
)
flags.DEFINE_string(
    "template_mmcif_dir",
    None,
    "Path to a directory with template mmCIF structures, each named " "<pdb_id>.cif",
)
flags.DEFINE_string(
    "max_template_date",
    None,
    "Maximum template release date to consider. Important if folding "
    "historical test sets.",
)
flags.DEFINE_string(
    "obsolete_pdbs_path",
    None,
    "Path to file containing a mapping from obsolete PDB IDs to the PDB IDs "
    "of their replacements.",
)
flags.DEFINE_enum(
    "db_preset",
    "full_dbs",
    ["full_dbs", "reduced_dbs"],
    "Choose preset MSA database configuration - smaller genetic database "
    "config (reduced_dbs) or full genetic database config  (full_dbs)",
)
flags.DEFINE_boolean(
    "use_precomputed_msas",
    True,
    "Whether to read MSAs that have been written to disk instead of running "
    "the MSA tools. The MSA files are looked up in the output directory, "
    "so it must stay the same between multiple runs that are to reuse the "
    "MSAs. WARNING: This will not check if the sequence, database or "
    "configuration have changed.",
)
flags.DEFINE_boolean("use_uniprot", True, "Whether to use UniProt MSAs.")

FLAGS = flags.FLAGS

MAX_TEMPLATE_HITS = 20


def _check_flag(flag_name: str, other_flag_name: str, should_be_set: bool):
    if should_be_set != bool(FLAGS[flag_name].value):
        verb = "be" if should_be_set else "not be"
        raise ValueError(
            f"{flag_name} must {verb} set when running with "
            f'"--{other_flag_name}={FLAGS[other_flag_name].value}".'
        )


def generate_pkl_features(
    fasta_path: str,
    fasta_name: str,
    output_dir_base: str,
    data_pipeline: pipeline.DataPipeline,
    use_uniprot: bool,
):
    """
    Predicts structure using AlphaFold for the given sequence.
    """
    logging.info(f"searching homogeneous Sequences & structures for {fasta_name}...")
    timings = {}
    output_dir = os.path.join(output_dir_base, fasta_name.split("_")[0])
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    chain_id = fasta_name.split("_")[1] if len(fasta_name.split("_")) > 1 else "A"
    msa_output_dir = os.path.join(output_dir, chain_id)
    if not os.path.exists(msa_output_dir):
        os.makedirs(msa_output_dir)

    # Get features.
    features_output_path = os.path.join(
        output_dir, "{}.feature.pkl.gz".format(chain_id)
    )
    if not os.path.exists(features_output_path):
        t_0 = time.time()
        feature_dict = data_pipeline.process(
            input_fasta_path=fasta_path, msa_output_dir=msa_output_dir
        )
        timings["features"] = time.time() - t_0
        feature_dict = compress_features(feature_dict)
        pickle.dump(feature_dict, gzip.GzipFile(features_output_path, "wb"), protocol=4)

    # Get uniprot
    if use_uniprot:
        uniprot_output_path = os.path.join(
            output_dir, "{}.uniprot.pkl.gz".format(chain_id)
        )
        if not os.path.exists(uniprot_output_path):
            t_0 = time.time()
            all_seq_feature_dict = data_pipeline.process_uniprot(
                input_fasta_path=fasta_path, msa_output_dir=msa_output_dir
            )
            timings["all_seq_features"] = time.time() - t_0
            all_seq_feature_dict = compress_features(all_seq_feature_dict)
            pickle.dump(
                all_seq_feature_dict,
                gzip.GzipFile(uniprot_output_path, "wb"),
                protocol=4,
            )

    logging.info("Final timings for %s: %s", fasta_name, timings)

    timings_output_path = os.path.join(output_dir, "{}.timings.json".format(chain_id))
    with open(timings_output_path, "w") as f:
        f.write(json.dumps(timings, indent=4))


def main(argv):
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")

    for tool_name in (
        "jackhmmer",
        "hhblits",
        "hhsearch",
        "hmmsearch",
        "hmmbuild",
        "kalign",
    ):
        if not FLAGS[f"{tool_name}_binary_path"].value:
            raise ValueError(
                f'Could not find path to the "{tool_name}" binary. Make '
                "sure it is installed on your system."
            )

    use_small_bfd = FLAGS.db_preset == "reduced_dbs"
    _check_flag("small_bfd_database_path", "db_preset", should_be_set=use_small_bfd)
    _check_flag("bfd_database_path", "db_preset", should_be_set=not use_small_bfd)
    _check_flag(
        "uniclust30_database_path", "db_preset", should_be_set=not use_small_bfd
    )

    template_searcher = hmmsearch.Hmmsearch(
        binary_path=FLAGS.hmmsearch_binary_path,
        hmmbuild_binary_path=FLAGS.hmmbuild_binary_path,
        database_path=FLAGS.pdb_seqres_database_path,
    )

    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path,
    )

    data_pipeline = pipeline.DataPipeline(
        jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
        hhblits_binary_path=FLAGS.hhblits_binary_path,
        uniref90_database_path=FLAGS.uniref90_database_path,
        mgnify_database_path=FLAGS.mgnify_database_path,
        bfd_database_path=FLAGS.bfd_database_path,
        uniclust30_database_path=FLAGS.uniclust30_database_path,
        small_bfd_database_path=FLAGS.small_bfd_database_path,
        uniprot_database_path=FLAGS.uniprot_database_path,
        template_searcher=template_searcher,
        template_featurizer=template_featurizer,
        use_small_bfd=use_small_bfd,
        use_precomputed_msas=FLAGS.use_precomputed_msas,
    )

    fasta_path = FLAGS.fasta_path
    fasta_name = Path(fasta_path).stem
    input_fasta_str = open(fasta_path).read()
    input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
    if len(input_seqs) > 1:
        temp_names, temp_paths = divide_multi_chains(
            fasta_name, FLAGS.output_dir, input_seqs, input_descs
        )
        fasta_names = temp_names
        fasta_paths = temp_paths
    else:
        fasta_names = [fasta_name]
        fasta_paths = [fasta_path]

    # Check for duplicate FASTA file names.
    if len(fasta_names) != len(set(fasta_names)):
        raise ValueError("All FASTA paths must have a unique basename.")

    # Predict structure for each of the sequences.
    for i, fasta_path in enumerate(fasta_paths):
        fasta_name = fasta_names[i]
        generate_pkl_features(
            fasta_path=fasta_path,
            fasta_name=fasta_name,
            output_dir_base=FLAGS.output_dir,
            data_pipeline=data_pipeline,
            use_uniprot=FLAGS.use_uniprot,
        )


if __name__ == "__main__":
    flags.mark_flags_as_required(
        [
            "fasta_path",
            "output_dir",
            "uniref90_database_path",
            "mgnify_database_path",
            "template_mmcif_dir",
            "max_template_date",
            "obsolete_pdbs_path",
        ]
    )

    app.run(main)