process_multimer.py 14.3 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#            http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Feature processing logic for multimer data """

from typing import Iterable, MutableMapping, List
import collections

from unifold.data import residue_constants, msa_pairing
import numpy as np
from .utils import correct_template_restypes

FeatureDict = MutableMapping[str, np.ndarray]

REQUIRED_FEATURES = frozenset(
    {
        "aatype",
        "all_atom_mask",
        "all_atom_positions",
        "all_chains_entity_ids",
        "all_crops_all_chains_mask",
        "all_crops_all_chains_positions",
        "all_crops_all_chains_residue_ids",
        "assembly_num_chains",
        "asym_id",
        "bert_mask",
        "cluster_bias_mask",
        "deletion_matrix",
        "deletion_mean",
        "entity_id",
        "entity_mask",
        "mem_peak",
        "msa",
        "msa_mask",
        "num_alignments",
        "num_templates",
        "queue_size",
        "residue_index",
        "resolution",
        "seq_length",
        "seq_mask",
        "sym_id",
        "template_aatype",
        "template_all_atom_mask",
        "template_all_atom_positions",
        # zy added:
        "asym_len",
        "template_sum_probs",
        "num_sym",
        "msa_chains",
    }
)

MAX_TEMPLATES = 4
MSA_CROP_SIZE = 2048


def _is_homomer_or_monomer(chains: Iterable[FeatureDict]) -> bool:
    """Checks if a list of chains represents a homomer/monomer example."""
    # Note that an entity_id of 0 indicates padding.
    num_unique_chains = len(
        np.unique(
            np.concatenate(
                [
                    np.unique(chain["entity_id"][chain["entity_id"] > 0])
                    for chain in chains
                ]
            )
        )
    )
    return num_unique_chains == 1


def pair_and_merge(all_chain_features: MutableMapping[str, FeatureDict]) -> FeatureDict:
    """Runs processing on features to augment, pair and merge.

    Args:
        all_chain_features: A MutableMap of dictionaries of features for each chain.

    Returns:
        A dictionary of features.
    """

    process_unmerged_features(all_chain_features)

    np_chains_list = all_chain_features

    pair_msa_sequences = not _is_homomer_or_monomer(np_chains_list)

    if pair_msa_sequences:
        np_chains_list = msa_pairing.create_paired_features(chains=np_chains_list)
        np_chains_list = msa_pairing.deduplicate_unpaired_sequences(np_chains_list)
    np_chains_list = crop_chains(
        np_chains_list,
        msa_crop_size=MSA_CROP_SIZE,
        pair_msa_sequences=pair_msa_sequences,
        max_templates=MAX_TEMPLATES,
    )
    np_example = msa_pairing.merge_chain_features(
        np_chains_list=np_chains_list,
        pair_msa_sequences=pair_msa_sequences,
        max_templates=MAX_TEMPLATES,
    )
    np_example = process_final(np_example)
    return np_example


def crop_chains(
    chains_list: List[FeatureDict],
    msa_crop_size: int,
    pair_msa_sequences: bool,
    max_templates: int,
) -> List[FeatureDict]:
    """Crops the MSAs for a set of chains.

    Args:
        chains_list: A list of chains to be cropped.
        msa_crop_size: The total number of sequences to crop from the MSA.
        pair_msa_sequences: Whether we are operating in sequence-pairing mode.
        max_templates: The maximum templates to use per chain.

    Returns:
        The chains cropped.
    """

    # Apply the cropping.
    cropped_chains = []
    for chain in chains_list:
        cropped_chain = _crop_single_chain(
            chain,
            msa_crop_size=msa_crop_size,
            pair_msa_sequences=pair_msa_sequences,
            max_templates=max_templates,
        )
        cropped_chains.append(cropped_chain)

    return cropped_chains


def _crop_single_chain(
    chain: FeatureDict, msa_crop_size: int, pair_msa_sequences: bool, max_templates: int
) -> FeatureDict:
    """Crops msa sequences to `msa_crop_size`."""
    msa_size = chain["num_alignments"]

    if pair_msa_sequences:
        msa_size_all_seq = chain["num_alignments_all_seq"]
        msa_crop_size_all_seq = np.minimum(msa_size_all_seq, msa_crop_size // 2)

        # We reduce the number of un-paired sequences, by the number of times a
        # sequence from this chain's MSA is included in the paired MSA.    This keeps
        # the MSA size for each chain roughly constant.
        msa_all_seq = chain["msa_all_seq"][:msa_crop_size_all_seq, :]
        num_non_gapped_pairs = np.sum(
            np.any(msa_all_seq != msa_pairing.MSA_GAP_IDX, axis=1)
        )
        num_non_gapped_pairs = np.minimum(num_non_gapped_pairs, msa_crop_size_all_seq)

        # Restrict the unpaired crop size so that paired+unpaired sequences do not
        # exceed msa_seqs_per_chain for each chain.
        max_msa_crop_size = np.maximum(msa_crop_size - num_non_gapped_pairs, 0)
        msa_crop_size = np.minimum(msa_size, max_msa_crop_size)
    else:
        msa_crop_size = np.minimum(msa_size, msa_crop_size)

    include_templates = "template_aatype" in chain and max_templates
    if include_templates:
        num_templates = chain["template_aatype"].shape[0]
        templates_crop_size = np.minimum(num_templates, max_templates)

    for k in chain:
        k_split = k.split("_all_seq")[0]
        if k_split in msa_pairing.TEMPLATE_FEATURES:
            chain[k] = chain[k][:templates_crop_size, :]
        elif k_split in msa_pairing.MSA_FEATURES:
            if "_all_seq" in k and pair_msa_sequences:
                chain[k] = chain[k][:msa_crop_size_all_seq, :]
            else:
                chain[k] = chain[k][:msa_crop_size, :]

    chain["num_alignments"] = np.asarray(msa_crop_size, dtype=np.int32)
    if include_templates:
        chain["num_templates"] = np.asarray(templates_crop_size, dtype=np.int32)
    if pair_msa_sequences:
        chain["num_alignments_all_seq"] = np.asarray(
            msa_crop_size_all_seq, dtype=np.int32
        )
    return chain


def process_final(np_example: FeatureDict) -> FeatureDict:
    """Final processing steps in data pipeline, after merging and pairing."""
    np_example = _make_seq_mask(np_example)
    np_example = _make_msa_mask(np_example)
    np_example = _filter_features(np_example)
    return np_example


def _make_seq_mask(np_example):
    np_example["seq_mask"] = (np_example["entity_id"] > 0).astype(np.float32)
    return np_example


def _make_msa_mask(np_example):
    """Mask features are all ones, but will later be zero-padded."""

    np_example["msa_mask"] = np.ones_like(np_example["msa"], dtype=np.int8)

    seq_mask = (np_example["entity_id"] > 0).astype(np.int8)
    np_example["msa_mask"] *= seq_mask[None]

    return np_example


def _filter_features(np_example: FeatureDict) -> FeatureDict:
    """Filters features of example to only those requested."""
    return {k: v for (k, v) in np_example.items() if k in REQUIRED_FEATURES}


def process_unmerged_features(all_chain_features: MutableMapping[str, FeatureDict]):
    """Postprocessing stage for per-chain features before merging."""
    num_chains = len(all_chain_features)
    for chain_features in all_chain_features:
        # Convert deletion matrices to float.
        if "deletion_matrix_int" in chain_features:
            chain_features["deletion_matrix"] = np.asarray(
                chain_features.pop("deletion_matrix_int"), dtype=np.float32
            )
        if "deletion_matrix_int_all_seq" in chain_features:
            chain_features["deletion_matrix_all_seq"] = np.asarray(
                chain_features.pop("deletion_matrix_int_all_seq"), dtype=np.float32
            )

        chain_features["deletion_mean"] = np.mean(
            chain_features["deletion_matrix"], axis=0
        )

        if "all_atom_positions" not in chain_features:
            # Add all_atom_mask and dummy all_atom_positions based on aatype.
            all_atom_mask = residue_constants.STANDARD_ATOM_MASK[
                chain_features["aatype"]
            ]
            chain_features["all_atom_mask"] = all_atom_mask
            chain_features["all_atom_positions"] = np.zeros(
                list(all_atom_mask.shape) + [3]
            )

        # Add assembly_num_chains.
        chain_features["assembly_num_chains"] = np.asarray(num_chains)

    # Add entity_mask.
    for chain_features in all_chain_features:
        chain_features["entity_mask"] = (chain_features["entity_id"] != 0).astype(
            np.int32
        )


def empty_template_feats(n_res):
    return {
        "template_aatype": np.zeros((0, n_res)).astype(np.int64),
        "template_all_atom_positions": np.zeros((0, n_res, 37, 3)).astype(np.float32),
        "template_sum_probs": np.zeros((0, 1)).astype(np.float32),
        "template_all_atom_mask": np.zeros((0, n_res, 37)).astype(np.float32),
    }


def convert_monomer_features(monomer_features: FeatureDict) -> FeatureDict:
    """Reshapes and modifies monomer features for multimer models."""
    if monomer_features["template_aatype"].shape[0] == 0:
        monomer_features.update(
            empty_template_feats(monomer_features["aatype"].shape[0])
        )
    converted = {}
    unnecessary_leading_dim_feats = {
        "sequence",
        "domain_name",
        "num_alignments",
        "seq_length",
    }
    for feature_name, feature in monomer_features.items():
        if feature_name in unnecessary_leading_dim_feats:
            # asarray ensures it's a np.ndarray.
            feature = np.asarray(feature[0], dtype=feature.dtype)
        elif feature_name == "aatype":
            # The multimer model performs the one-hot operation itself.
            feature = np.argmax(feature, axis=-1).astype(np.int32)
        elif feature_name == "template_aatype":
            if feature.shape[0] > 0:
                feature = correct_template_restypes(feature)
        elif feature_name == "template_all_atom_masks":
            feature_name = "template_all_atom_mask"
        elif feature_name == "msa":
            feature = feature.astype(np.uint8)

        if feature_name.endswith("_mask"):
            feature = feature.astype(np.float32)

        converted[feature_name] = feature

    if "deletion_matrix_int" in monomer_features:
        monomer_features["deletion_matrix"] = monomer_features.pop(
            "deletion_matrix_int"
        ).astype(np.float32)

    converted.pop(
        "template_sum_probs"
    )  # zy: this input is checked to be dirty in shape. TODO: figure out why and make it right.
    return converted


def int_id_to_str_id(num: int) -> str:
    """Encodes a number as a string, using reverse spreadsheet style naming.

    Args:
        num: A positive integer.

    Returns:
        A string that encodes the positive integer using reverse spreadsheet style,
        naming e.g. 1 = A, 2 = B, ..., 27 = AA, 28 = BA, 29 = CA, ... This is the
        usual way to encode chain IDs in mmCIF files.
    """
    if num <= 0:
        raise ValueError(f"Only positive integers allowed, got {num}.")

    num = num - 1  # 1-based indexing.
    output = []
    while num >= 0:
        output.append(chr(num % 26 + ord("A")))
        num = num // 26 - 1
    return "".join(output)


def add_assembly_features(
    all_chain_features,
):
    """Add features to distinguish between chains.

    Args:
        all_chain_features: A dictionary which maps chain_id to a dictionary of
            features for each chain.

    Returns:
        all_chain_features: A dictionary which maps strings of the form
            `<seq_id>_<sym_id>` to the corresponding chain features. E.g. two
            chains from a homodimer would have keys A_1 and A_2. Two chains from a
            heterodimer would have keys A_1 and B_1.
    """
    # Group the chains by sequence
    seq_to_entity_id = {}
    grouped_chains = collections.defaultdict(list)
    for chain_features in all_chain_features:
        assert "sequence" in chain_features
        seq = str(chain_features["sequence"])
        if seq not in seq_to_entity_id:
            seq_to_entity_id[seq] = len(seq_to_entity_id) + 1
        grouped_chains[seq_to_entity_id[seq]].append(chain_features)

    new_all_chain_features = []
    chain_id = 1
    for entity_id, group_chain_features in grouped_chains.items():
        num_sym = len(group_chain_features)  # zy
        for sym_id, chain_features in enumerate(group_chain_features, start=1):
            seq_length = chain_features["seq_length"]
            chain_features["asym_id"] = chain_id * np.ones(seq_length)
            chain_features["sym_id"] = sym_id * np.ones(seq_length)
            chain_features["entity_id"] = entity_id * np.ones(seq_length)
            chain_features["num_sym"] = num_sym * np.ones(seq_length)
            chain_id += 1
            new_all_chain_features.append(chain_features)

    return new_all_chain_features


def pad_msa(np_example, min_num_seq):
    np_example = dict(np_example)
    num_seq = np_example["msa"].shape[0]
    if num_seq < min_num_seq:
        for feat in ("msa", "deletion_matrix", "bert_mask", "msa_mask", "msa_chains"):
            np_example[feat] = np.pad(
                np_example[feat], ((0, min_num_seq - num_seq), (0, 0))
            )
        np_example["cluster_bias_mask"] = np.pad(
            np_example["cluster_bias_mask"], ((0, min_num_seq - num_seq),)
        )
    return np_example


def post_process(np_example):
    np_example = pad_msa(np_example, 512)
    no_dim_keys = [
        "num_alignments",
        "assembly_num_chains",
        "num_templates",
        "seq_length",
        "resolution",
    ]
    for k in no_dim_keys:
        if k in np_example:
            np_example[k] = np_example[k].reshape(-1)
    return np_example


def merge_msas(msa, del_mat, new_msa, new_del_mat):
    cur_msa_set = set([tuple(m) for m in msa])
    new_rows = []
    for i, s in enumerate(new_msa):
        if tuple(s) not in cur_msa_set:
            new_rows.append(i)
    ret_msa = np.concatenate([msa, new_msa[new_rows]], axis=0)
    ret_del_mat = np.concatenate([del_mat, new_del_mat[new_rows]], axis=0)
    return ret_msa, ret_del_mat