perf_unifold.py 7.01 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import argparse
import os

import torch
import torch.nn as nn

import os
import sys
import pathlib

from tqdm import tqdm

from unifold.modules.evoformer import EvoformerIteration
from unifold.modules.attentions import gen_msa_attn_mask, gen_tri_attn_mask


class WrapEvoformerLayer(nn.Module):
    def __init__(self, d_node, d_pair):
        super(WrapEvoformerLayer, self).__init__()
        self.d_node = d_node
        self.d_pair = d_pair

        self.c_hidden_msa_att = int(d_node / 8)
        self.c_hidden_pair_att = int(d_pair / 4)

        self.EvoformerIteration = EvoformerIteration(
            d_msa=d_node,
            d_pair=d_pair,
            d_hid_msa_att=self.c_hidden_msa_att,
            d_hid_opm=self.c_hidden_msa_att,
            d_hid_mul=self.d_pair,
            d_hid_pair_att=self.c_hidden_pair_att,
            num_heads_msa=8,
            num_heads_pair=4,
            transition_n=4,
            msa_dropout=0.15,
            pair_dropout=0.25,
            outer_product_mean_first=False,
            inf=3e4,
            eps=1e-5,
        )
        self.alphafold_original_mode()

    def alphafold_original_mode(self):
        def set_alphafold_original_mode(module):
            if hasattr(module, "apply_alphafold_original_mode"):
                module.apply_alphafold_original_mode()
            if hasattr(module, "act"):
                module.act = nn.ReLU()

        self.apply(set_alphafold_original_mode)

    def forward(
        self,
        node,
        pair,
        node_mask,
        pair_mask,
        msa_row_attn_mask: torch.Tensor,
        msa_col_attn_mask: torch.Tensor,
        tri_start_attn_mask: torch.Tensor,
        tri_end_attn_mask: torch.Tensor,
        chunk_size: int,
    ):
        node, pair = self.EvoformerIteration(
            node,
            pair,
            node_mask,
            pair_mask,
            msa_row_attn_mask,
            msa_col_attn_mask,
            tri_start_attn_mask,
            tri_end_attn_mask,
            chunk_size=chunk_size,
        )
        return node, pair


def main():

    parser = argparse.ArgumentParser(description="Evoformer Standalone Perf Benchmark")
    parser.add_argument("--batch-size", default=1, type=int, help="batch size")
    parser.add_argument(
        "--msa-length", default=128, type=int, help="Sequence Length of MSA"
    )
    parser.add_argument(
        "--res-length", default=256, type=int, help="Sequence Length of Residues"
    )
    parser.add_argument(
        "--trials", default=50, type=int, help="Number of Trials to Execute"
    )
    parser.add_argument(
        "--warmup-trials", default=5, type=int, help="Warmup Trials to discard"
    )
    parser.add_argument(
        "--layers", default=4, type=int, help="Evoformer Layers to Execute"
    )
    parser.add_argument(
        "--chunk-size", default=None, type=int, help="Evoformer Layers to Execute"
    )
    parser.add_argument("--cm", default=256, type=int, help="MSA hidden dimension")
    parser.add_argument("--cz", default=128, type=int, help="Pair hidden dimension")
    parser.add_argument("--fwd", action="store_true", help="Only execute Fwd Pass.")
    parser.add_argument(
        "--fp16", action="store_true", help="Use fp16 for benchmark (for V100)"
    )

    args = parser.parse_args()

    precision = torch.bfloat16

    if args.fp16:
        precision = torch.float16

    if not torch.cuda.is_available():
        raise NotImplementedError("Running on CPU is not supported")

    torch.manual_seed(42)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(42)

    attn_layers = []
    for idx in range(0, args.layers):
        attn_layers.append(WrapEvoformerLayer(d_node=args.cm, d_pair=args.cz))
        attn_layers[idx].cuda()
        attn_layers[idx].to(dtype=precision)
        if args.fwd:
            attn_layers[idx].eval()

    start_evt_fwd = []
    start_evt_bwd = []
    stop_evt_bwd = []
    for recorded_trial in range(0, args.trials):
        start_evt_fwd.append(torch.cuda.Event(enable_timing=True))
        start_evt_bwd.append(torch.cuda.Event(enable_timing=True))
        stop_evt_bwd.append(torch.cuda.Event(enable_timing=True))

    inputs_node = torch.randn(
        args.batch_size,
        args.msa_length,
        args.res_length,
        args.cm,
        dtype=precision,
        device=torch.device("cuda"),
    ).requires_grad_(True)
    inputs_pair = torch.randn(
        args.batch_size,
        args.res_length,
        args.res_length,
        args.cz,
        dtype=precision,
        device=torch.device("cuda"),
    ).requires_grad_(True)
    node_mask = torch.ones(
        (args.batch_size, args.msa_length, args.res_length),
        dtype=precision,
        device=torch.device("cuda"),
    ).requires_grad_(False)

    msa_raw_mask, msa_col_mask = gen_msa_attn_mask(node_mask, 3e4)
    pair_mask = torch.ones(
        (args.batch_size, args.res_length, args.res_length),
        dtype=precision,
        device=torch.device("cuda"),
    ).requires_grad_(False)
    tri_start_mask, tri_end_mask = gen_tri_attn_mask(pair_mask, 3e4)

    total_used_mem_gb = 0
    for trial in range(0, args.trials + args.warmup_trials):
        layer_inputs = inputs_node, inputs_pair
        evt_idx = trial - args.warmup_trials

        torch.cuda.synchronize()
        torch.cuda.reset_peak_memory_stats()
        if evt_idx >= 0:
            start_evt_fwd[evt_idx].record()
        with torch.set_grad_enabled(not args.fwd):
            for lyr_idx in range(0, args.layers):
                layer_inputs = attn_layers[lyr_idx].forward(
                    *layer_inputs,
                    node_mask,
                    pair_mask,
                    msa_raw_mask,
                    msa_col_mask,
                    tri_start_mask,
                    tri_end_mask,
                    chunk_size=args.chunk_size,
                )

        torch.cuda.synchronize()

        if evt_idx >= 0:
            start_evt_bwd[evt_idx].record()

        if not args.fwd:
            s = layer_inputs[0].mean() + layer_inputs[1].mean()
            s.backward()

        torch.cuda.synchronize()
        cur_cost_mem = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
        total_used_mem_gb += cur_cost_mem
        if evt_idx >= 0:
            stop_evt_bwd[evt_idx].record()


    torch.cuda.synchronize()
    elapsed_time_fwd = 0.0
    elapsed_time_bwd = 0.0
    for evt_idx in range(0, args.trials):
        elapsed_time_fwd += start_evt_fwd[evt_idx].elapsed_time(start_evt_bwd[evt_idx])
        elapsed_time_bwd += start_evt_bwd[evt_idx].elapsed_time(stop_evt_bwd[evt_idx])

    print(
        " Input: {:4d}, {:4d}, {:4d}, ({:4d} {:4d}), Fwd Time / Layer: {:.3f} ms, Bwd Time / Layer: {:.3f} ms, Memory cost {:.3f} GB".format(
            args.batch_size,
            args.msa_length,
            args.res_length,
            args.cm,
            args.cz,
            elapsed_time_fwd  / (args.trials * args.layers),
            elapsed_time_bwd  / (args.trials * args.layers),
            total_used_mem_gb / (args.trials + args.warmup_trials),
        )
    )


if __name__ == "__main__":
    main()