perf_others.py 7.3 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# modified from https://github.com/hpcaitech/FastFold/blob/main/benchmark/perf.py
import argparse
import os

import torch
import torch.nn as nn

from fastfold.distributed import init_dap
from fastfold.model.fastnn import Evoformer


def main():

    parser = argparse.ArgumentParser(description='Evoformer Standalone Perf Benchmark')
    parser.add_argument("--dap-size", default=1, type=int, help='batch size')
    parser.add_argument('--batch-size', default=1, type=int, help='batch size')
    parser.add_argument('--msa-length', default=128, type=int, help='Sequence Length of MSA')
    parser.add_argument('--res-length',
                        default=256,
                        type=int,
                        help='Sequence Length of Residues')
    parser.add_argument('--trials', default=50, type=int, help='Number of Trials to Execute')
    parser.add_argument('--warmup-trials', default=5, type=int, help='Warmup Trials to discard')
    parser.add_argument('--layers',
                        default=4,
                        type=int,
                        help='Evoformer Layers to Execute')
    parser.add_argument('--cm', default=256, type=int, help='MSA hidden dimension')
    parser.add_argument('--cz', default=128, type=int, help='Pair hidden dimension')
    parser.add_argument('--heads', default=8, type=int, help='Number of Multihead Attention heads')
    parser.add_argument('--openfold',
                        action='store_true',
                        help='Benchmark with Evoformer Implementation from OpenFold.')
    parser.add_argument('--openfold-lma',
                        action='store_true',
                        help='set use_lma to True in openfold.')
    parser.add_argument('--fwd', action='store_true', help='Only execute Fwd Pass.')

    args = parser.parse_args()

    init_dap(args.dap_size)

    precision = torch.bfloat16
    if args.dap_size > 1:
        # (PyTorch issue) Currently All2All communication does not support the Bfloat16 datatype in PyTorch
        precision = torch.float16

    if not torch.cuda.is_available():
        raise NotImplementedError('Running on CPU is not supported')

    torch.manual_seed(42)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(42)

    if args.openfold:
        from openfold.model.evoformer import EvoformerBlock

        class OpenFoldEvoformer(nn.Module):

            def __init__(self, d_node, d_pair):
                super(OpenFoldEvoformer, self).__init__()
                self.d_node = d_node
                self.d_pair = d_pair

                self.c_hidden_msa_att = int(d_node / 8)
                self.c_hidden_pair_att = int(d_pair / 4)

                self.EvoformerBlock = EvoformerBlock(c_m=d_node,
                                                     c_z=d_pair,
                                                     c_hidden_msa_att=self.c_hidden_msa_att,
                                                     c_hidden_opm=self.c_hidden_msa_att,
                                                     c_hidden_mul=self.d_pair,
                                                     c_hidden_pair_att=self.c_hidden_pair_att,
                                                     no_heads_msa=8,
                                                     no_heads_pair=4,
                                                     transition_n=4,
                                                     msa_dropout=0.15,
                                                     pair_dropout=0.25,
                                                     inf=1e9,
                                                     eps=1e-10)

            def forward(self, node, pair, node_mask, pair_mask):
                node, pair = self.EvoformerBlock(node, pair, node_mask, pair_mask, use_lma=args.openfold_lma)
                return node, pair

    attn_layers = []
    for idx in range(0, args.layers):
        if args.openfold:
            attn_layers.append(OpenFoldEvoformer(d_node=args.cm, d_pair=args.cz))
        else:
            attn_layers.append(Evoformer(d_node=args.cm, d_pair=args.cz))
        attn_layers[idx].cuda()
        attn_layers[idx].to(dtype=precision)

    start_evt_fwd = []
    start_evt_bwd = []
    stop_evt_bwd = []
    for recorded_trial in range(0, args.trials):
        start_evt_fwd.append(torch.cuda.Event(enable_timing=True))
        start_evt_bwd.append(torch.cuda.Event(enable_timing=True))
        stop_evt_bwd.append(torch.cuda.Event(enable_timing=True))

    inputs_node = torch.randn(args.batch_size,
                              args.msa_length // args.dap_size,
                              args.res_length,
                              args.cm,
                              dtype=precision,
                              device=torch.device("cuda")).requires_grad_(True)
    inputs_pair = torch.randn(args.batch_size,
                              args.res_length // args.dap_size,
                              args.res_length,
                              args.cz,
                              dtype=precision,
                              device=torch.device("cuda")).requires_grad_(True)
    node_mask = torch.ones((args.batch_size, args.msa_length, args.res_length),
                           dtype=precision,
                           device=torch.device("cuda")).requires_grad_(False)
    pair_mask = torch.ones((args.batch_size, args.res_length, args.res_length),
                           dtype=precision,
                           device=torch.device("cuda")).requires_grad_(False)


    total_used_mem_gb = 0
    for trial in range(0, args.trials + args.warmup_trials):
        layer_inputs = inputs_node, inputs_pair
        evt_idx = trial - args.warmup_trials

        torch.distributed.barrier()
        torch.cuda.synchronize()
        torch.cuda.reset_peak_memory_stats()
        if evt_idx >= 0:
            start_evt_fwd[evt_idx].record()
        with torch.set_grad_enabled(not args.fwd):
            for lyr_idx in range(0, args.layers):
                layer_inputs = attn_layers[lyr_idx].forward(
                    *layer_inputs,
                    node_mask,
                    pair_mask,
                )

        torch.cuda.synchronize()

        if evt_idx >= 0:
            start_evt_bwd[evt_idx].record()

        if not args.fwd:
            s = layer_inputs[0].mean() + layer_inputs[1].mean()
            s.backward()

        torch.cuda.synchronize()
        cur_cost_mem = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
        total_used_mem_gb += cur_cost_mem
        if evt_idx >= 0:
            stop_evt_bwd[evt_idx].record()


    torch.cuda.synchronize()
    elapsed_time_fwd = 0.0
    elapsed_time_bwd = 0.0
    for evt_idx in range(0, args.trials):
        elapsed_time_fwd += start_evt_fwd[evt_idx].elapsed_time(start_evt_bwd[evt_idx])
        elapsed_time_bwd += start_evt_bwd[evt_idx].elapsed_time(stop_evt_bwd[evt_idx])

    print(
        "Input: {:4d}, {:4d}, {:4d}, ({:4d} {:4d}), Fwd Time / Layer: {:.3f} ms, Bwd Time / Layer: {:.3f} ms, Memory cost {:.3f} GB".format(
            args.batch_size,
            args.msa_length,
            args.res_length,
            args.cm,
            args.cz,
            elapsed_time_fwd  / (args.trials * args.layers),
            elapsed_time_bwd  / (args.trials * args.layers),
            total_used_mem_gb / (args.trials + args.warmup_trials),
        )
    )


if __name__ == '__main__':
    main()