options.py 21.6 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright (c) DP Technology.
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse

import torch


from typing import Callable, List, Optional
# this import is for backward compatibility
from unicore.utils import csv_str_list, eval_bool, eval_str_dict, eval_str_list, import_user_module  # noqa


def get_training_parser(default_task="translation"):
    parser = get_parser("Trainer", default_task)
    add_dataset_args(parser, train=True)
    add_distributed_training_args(parser)
    add_model_args(parser)
    add_optimization_args(parser)
    add_checkpoint_args(parser)
    return parser


def get_validation_parser(default_task=None):
    parser = get_parser("Validation", default_task)
    add_dataset_args(parser, train=True)
    add_distributed_training_args(parser)
    group = parser.add_argument_group("Evaluation")
    add_common_eval_args(group)
    return parser


def parse_args_and_arch(
    parser: argparse.ArgumentParser,
    input_args: List[str] = None,
    parse_known: bool = False,
    suppress_defaults: bool = False,
    modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None,
):
    """
    Args:
        parser (ArgumentParser): the parser
        input_args (List[str]): strings to parse, defaults to sys.argv
        parse_known (bool): only parse known arguments, similar to
            `ArgumentParser.parse_known_args`
        suppress_defaults (bool): parse while ignoring all default values
        modify_parser (Optional[Callable[[ArgumentParser], None]]):
            function to modify the parser, e.g., to set default values
    """
    if suppress_defaults:
        # Parse args without any default values. This requires us to parse
        # twice, once to identify all the necessary task/model args, and a second
        # time with all defaults set to None.
        args = parse_args_and_arch(
            parser,
            input_args=input_args,
            parse_known=parse_known,
            suppress_defaults=False,
        )
        suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser])
        suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()})
        args = suppressed_parser.parse_args(input_args)
        return argparse.Namespace(
            **{k: v for k, v in vars(args).items() if v is not None}
        )

    from unicore.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY, MODEL_REGISTRY

    # Before creating the true parser, we need to import optional user module
    # in order to eagerly import custom tasks, optimizers, architectures, etc.
    usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
    usr_parser.add_argument("--user-dir", default=None)
    usr_args, _ = usr_parser.parse_known_args(input_args)
    import_user_module(usr_args)

    if modify_parser is not None:
        modify_parser(parser)

    # The parser doesn't know about model/loss/optimizer-specific args, so
    # we parse twice. First we parse the model/loss/optimizer, then we
    # parse a second time after adding the *-specific arguments.
    # If input_args is given, we will parse those args instead of sys.argv.
    args, _ = parser.parse_known_args(input_args)

    # Add model-specific args to parser.
    if hasattr(args, "arch"):
        model_specific_group = parser.add_argument_group(
            "Model-specific configuration",
            # Only include attributes which are explicitly given as command-line
            # arguments or which have default values.
            argument_default=argparse.SUPPRESS,
        )
        if args.arch in ARCH_MODEL_REGISTRY:
            ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group)
        elif args.arch in MODEL_REGISTRY:
            MODEL_REGISTRY[args.arch].add_args(model_specific_group)
        else:
            raise RuntimeError()

    if hasattr(args, "task"):
        from unicore.tasks import TASK_REGISTRY

        TASK_REGISTRY[args.task].add_args(parser)

    # Add *-specific args to parser.
    from unicore.registry import REGISTRIES

    for registry_name, REGISTRY in REGISTRIES.items():
        choice = getattr(args, registry_name, None)
        if choice is not None:
            cls = REGISTRY["registry"][choice]
            if hasattr(cls, "add_args"):
                cls.add_args(parser)

    # Modify the parser a second time, since defaults may have been reset
    if modify_parser is not None:
        modify_parser(parser)

    # Parse a second time.
    if parse_known:
        args, extra = parser.parse_known_args(input_args)
    else:
        args = parser.parse_args(input_args)
        extra = None
    # Post-process args.
    if (
        hasattr(args, "batch_size_valid") and args.batch_size_valid is None
    ) or not hasattr(args, "batch_size_valid"):
        args.batch_size_valid = args.batch_size
    args.bf16 = getattr(args, "bf16", False)

    if getattr(args, "seed", None) is None:
        args.seed = 1  # default seed for training
        args.no_seed_provided = True
    else:
        args.no_seed_provided = False

    # Apply architecture configuration.
    if hasattr(args, "arch") and args.arch in ARCH_CONFIG_REGISTRY:
        ARCH_CONFIG_REGISTRY[args.arch](args)

    if parse_known:
        return args, extra
    else:
        return args


def get_parser(desc, default_task='test'):
    # Before creating the true parser, we need to import optional user module
    # in order to eagerly import custom tasks, optimizers, architectures, etc.
    usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
    usr_parser.add_argument('--user-dir', default=None)
    usr_args, _ = usr_parser.parse_known_args()
    import_user_module(usr_args)

    parser = argparse.ArgumentParser(allow_abbrev=False)
    # fmt: off
    parser.add_argument('--no-progress-bar', action='store_true', help='disable progress bar')
    parser.add_argument('--log-interval', type=int, default=1000, metavar='N',
                        help='log progress every N batches (when progress bar is disabled)')
    parser.add_argument('--log-format', default=None, help='log format to use',
                        choices=['json', 'none', 'simple', 'tqdm'])
    parser.add_argument('--tensorboard-logdir', metavar='DIR', default='',
                        help='path to save logs for tensorboard, should match --logdir '
                             'of running tensorboard (default: no tensorboard logging)')
    parser.add_argument('--seed', default=1, type=int, metavar='N',
                        help='pseudo random number generator seed')
    parser.add_argument('--cpu', action='store_true', help='use CPU instead of CUDA')
    parser.add_argument('--fp16', action='store_true', help='use FP16')
    parser.add_argument('--bf16', action='store_true', help='use BF16')
    parser.add_argument('--bf16-sr', action='store_true', help='use stachostic rounding for bf16')
    parser.add_argument('--allreduce-fp32-grad', action='store_true', help='use fp32-grads in fp16/bf16 mode. --ddp-backend should be no_c10d')
    parser.add_argument('--fp16-no-flatten-grads', action='store_true', help="don't flatten FP16 grads tensor")
    parser.add_argument('--fp16-init-scale', default=2 ** 7, type=int,
                        help='default FP16 loss scale')
    parser.add_argument('--fp16-scale-window', type=int,
                        help='number of updates before increasing loss scale')
    parser.add_argument('--fp16-scale-tolerance', default=0.0, type=float,
                        help='pct of updates that can overflow before decreasing the loss scale')
    parser.add_argument('--min-loss-scale', default=1e-4, type=float, metavar='D',
                        help='minimum FP16 loss scale, after which training is stopped')
    parser.add_argument('--threshold-loss-scale', type=float,
                        help='threshold FP16 loss scale from below')
    parser.add_argument('--user-dir', default=None,
                        help='path to a python module containing custom extensions (tasks and/or architectures)')
    parser.add_argument('--empty-cache-freq', default=0, type=int,
                        help='how often to clear the PyTorch CUDA cache (0 to disable)')
    parser.add_argument('--all-gather-list-size', default=16384, type=int,
                        help='number of bytes reserved for gathering stats from workers')
    parser.add_argument('--suppress-crashes', action='store_true', help="suppress crashes when training with the entry point so that the "
                        "main method can return a value (useful for sweeps)")
    parser.add_argument('--profile', action='store_true', help="enable autograd profiler emit_nvtx")
    parser.add_argument('--ema-decay', default=-1.0, type=float, help="enable moving average for model weights")
    

    from unicore.registry import REGISTRIES
    for registry_name, REGISTRY in REGISTRIES.items():
        parser.add_argument(
            '--' + registry_name.replace('_', '-'),
            default=REGISTRY['default'],
            choices=REGISTRY['registry'].keys(),
        )

    # Task definitions can be found under unicore/tasks/
    from unicore.tasks import TASK_REGISTRY
    parser.add_argument('--task', metavar='TASK', default=default_task,
                        choices=TASK_REGISTRY.keys(),
                        help='task')
    # fmt: on
    return parser


def add_dataset_args(parser, train=False, gen=False):
    group = parser.add_argument_group('Dataset and data loading')
    # fmt: off
    group.add_argument('--num-workers', default=1, type=int, metavar='N',
                       help='how many subprocesses to use for data loading')
    group.add_argument('--skip-invalid-size-inputs-valid-test', action='store_true',
                       help='ignore too long or too short lines in valid and test set')
    group.add_argument('--batch-size', '--max-sentences', type=int, metavar='N',
                       help='maximum number of sentences in a batch')
    group.add_argument('--required-batch-size-multiple', default=8, type=int, metavar='N',
                       help='batch size will be a multiplier of this value')
    group.add_argument('--data-buffer-size', default=10, type=int,
                       help='Number of batches to preload')
    group.add_argument('--train-subset', default='train', metavar='SPLIT',
                        choices=['train', 'valid', 'test', 'train.small'],
                        help='data subset to use for training (train, valid, test)')
    group.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                        help='comma separated list of data subsets to use for validation'
                            ' (train, valid, valid1, test, test1)')
    group.add_argument('--validate-interval', type=int, default=1, metavar='N',
                        help='validate every N epochs')
    group.add_argument('--validate-interval-updates', type=int, default=0, metavar='N',
                        help='validate every N updates')
    group.add_argument('--validate-after-updates', type=int, default=0, metavar='N',
                        help='dont validate until reaching this many updates')
    group.add_argument('--fixed-validation-seed', default=None, type=int, metavar='N',
                        help='specified random seed for validation')
    group.add_argument('--disable-validation', action='store_true',
                        help='disable validation')
    group.add_argument('--batch-size-valid', type=int, metavar='N',
                        help='maximum number of sentences in a validation batch'
                            ' (defaults to --max-sentences)')
    group.add_argument('--max-valid-steps', type=int, metavar='N',
                        help='How many batches to evaluate')
    group.add_argument('--curriculum', default=0, type=int, metavar='N',
                        help='don\'t shuffle batches for first N epochs')
    # fmt: on
    return group


def add_distributed_training_args(parser):
    group = parser.add_argument_group('Distributed training')
    # fmt: off
    group.add_argument('--distributed-world-size', type=int, metavar='N',
                       default=max(1, torch.cuda.device_count()),
                       help='total number of GPUs across all nodes (default: all visible GPUs)')
    group.add_argument('--distributed-rank', default=0, type=int,
                       help='rank of the current worker')
    group.add_argument('--distributed-backend', default='nccl', type=str,
                       help='distributed backend')
    group.add_argument('--distributed-init-method', default=None, type=str,
                       help='typically tcp://hostname:port that will be used to '
                            'establish initial connetion')
    group.add_argument('--distributed-port', default=-1, type=int,
                       help='port number (not required if using --distributed-init-method)')
    group.add_argument('--device-id', '--local_rank', default=0, type=int,
                       help='which GPU to use (usually configured automatically)')
    group.add_argument('--distributed-no-spawn', action='store_true',
                       help='do not spawn multiple processes even if multiple GPUs are visible')
    group.add_argument('--ddp-backend', default='c10d', type=str,
                       choices=['c10d', 'apex', 'no_c10d'],
                       help='DistributedDataParallel backend')
    group.add_argument('--bucket-cap-mb', default=25, type=int, metavar='MB',
                       help='bucket size for reduction')
    group.add_argument('--fix-batches-to-gpus', action='store_true',
                       help='don\'t shuffle batches between GPUs; this reduces overall '
                            'randomness and may affect precision but avoids the cost of '
                            're-reading the data')
    group.add_argument('--find-unused-parameters', default=False, action='store_true',
                       help='disable unused parameter detection (not applicable to '
                       'no_c10d ddp-backend')
    group.add_argument('--fast-stat-sync', default=False, action='store_true',
                        help='Enable fast sync of stats between nodes, this hardcodes to '
                        'sync only some default stats from logging_output.')
    group.add_argument('--broadcast-buffers', default=False, action='store_true',
                        help="Copy non-trainable parameters between GPUs, such as "
                             "batchnorm population statistics")
    group.add_argument('--nprocs-per-node', default=max(1, torch.cuda.device_count()), type=int,
                       help="number of GPUs in each node. An allreduce operation across GPUs in "
                            "a node is very fast. Hence, we do allreduce across GPUs in a node, "
                            "and gossip across different nodes")
    # fmt: on
    return group


def add_optimization_args(parser):
    group = parser.add_argument_group('Optimization')
    # fmt: off
    group.add_argument('--max-epoch', '--me', default=0, type=int, metavar='N',
                       help='force stop training at specified epoch')
    group.add_argument('--max-update', '--mu', default=0, type=int, metavar='N',
                       help='force stop training at specified update')
    group.add_argument('--stop-time-hours', default=0, type=float,
                       help="force stop training after specified cumulative time (if >0)")
    group.add_argument('--clip-norm', default=0, type=float, metavar='NORM',
                       help='clip threshold of gradients')
    group.add_argument('--per-sample-clip-norm', default=0, type=float, metavar='PNORM',
                       help='clip threshold of gradients, before gradient sync over workers. In fp16/bf16 mode, --fp32-grad should be set, and --dpp-backend should be no_c10d')
    group.add_argument('--update-freq', default='1', metavar='N1,N2,...,N_K',
                       type=lambda uf: eval_str_list(uf, type=int),
                       help='update parameters every N_i batches, when in epoch i')
    group.add_argument('--lr', '--learning-rate', default='0.25', type=eval_str_list,
                       metavar='LR_1,LR_2,...,LR_N',
                       help='learning rate for the first N epochs; all epochs >N using LR_N'
                            ' (note: this may be interpreted differently depending on --lr-scheduler)')
    group.add_argument('--stop-min-lr', default=-1, type=float, metavar='LR',
                       help='stop training when the learning rate reaches this minimum')
    # fmt: on
    return group


def add_checkpoint_args(parser):
    group = parser.add_argument_group('Checkpointing')
    # fmt: off
    group.add_argument('--save-dir', metavar='DIR', default='checkpoints',
                       help='path to save checkpoints')
    group.add_argument('--tmp-save-dir', metavar='DIR', default='./',
                       help='path to temporarily save checkpoints')
    group.add_argument('--restore-file', default='checkpoint_last.pt',
                       help='filename from which to load checkpoint '
                            '(default: <save-dir>/checkpoint_last.pt')
    group.add_argument('--finetune-from-model', type=str,
                       help="finetune from a pretrained model; note that meters and lr scheduler will be reset")
    group.add_argument('--load-from-ema', action="store_true",
                       help="finetune from a pretrained model; note that meters and lr scheduler will be reset")
    group.add_argument('--reset-dataloader', action='store_true',
                       help='if set, does not reload dataloader state from the checkpoint')
    group.add_argument('--reset-lr-scheduler', action='store_true',
                       help='if set, does not load lr scheduler state from the checkpoint')
    group.add_argument('--reset-meters', action='store_true',
                       help='if set, does not load meters from the checkpoint')
    group.add_argument('--reset-optimizer', action='store_true',
                       help='if set, does not load optimizer state from the checkpoint')
    group.add_argument('--optimizer-overrides', default="{}", type=str, metavar='DICT',
                       help='a dictionary used to override optimizer args when loading a checkpoint')
    group.add_argument('--save-interval', type=int, default=1, metavar='N',
                       help='save a checkpoint every N epochs')
    group.add_argument('--save-interval-updates', type=int, default=0, metavar='N',
                       help='save a checkpoint (and validate) every N updates')
    group.add_argument('--keep-interval-updates', type=int, default=-1, metavar='N',
                       help='keep the last N checkpoints saved with --save-interval-updates')
    group.add_argument('--keep-last-epochs', type=int, default=-1, metavar='N',
                       help='keep last N epoch checkpoints')
    group.add_argument('--keep-best-checkpoints', type=int, default=-1, metavar='N',
                       help='keep best N checkpoints based on scores')
    group.add_argument('--no-save', action='store_true',
                       help='don\'t save models or checkpoints')
    group.add_argument('--no-epoch-checkpoints', action='store_true',
                       help='only store last and best checkpoints')
    group.add_argument('--no-last-checkpoints', action='store_true',
                       help='don\'t store last checkpoints')
    group.add_argument('--no-save-optimizer-state', action='store_true',
                       help='don\'t save optimizer-state as part of checkpoint')
    group.add_argument('--best-checkpoint-metric', type=str, default='loss',
                       help='metric to use for saving "best" checkpoints')
    group.add_argument('--maximize-best-checkpoint-metric', action='store_true',
                       help='select the largest metric value for saving "best" checkpoints')
    group.add_argument('--patience', type=int, default=-1, metavar='N',
                       help="early stop training if valid performance doesn't "
                            "improve for N consecutive validation runs; note "
                            "that this is influenced by --validate-interval")
    group.add_argument('--checkpoint-suffix', type=str, default="",
                       help="suffix to add to the checkpoint file name")
    # fmt: on
    return group


def add_common_eval_args(group):
    # fmt: off
    group.add_argument('--path', metavar='FILE',
                       help='path(s) to model file(s), colon separated')
    group.add_argument('--quiet', action='store_true',
                       help='only print final scores')
    group.add_argument('--model-overrides', default="{}", type=str, metavar='DICT',
                       help='a dictionary used to override model args at generation '
                            'that were used during model training')
    group.add_argument('--results-path', metavar='RESDIR', type=str, default=None,
                       help='path to save eval results (optional)"')
    # fmt: on


def add_model_args(parser):
    group = parser.add_argument_group('Model configuration')
    # fmt: off

    # Model definitions can be found under unicore/models/
    #
    # The model architecture can be specified in several ways.
    # In increasing order of priority:
    # 1) model defaults (lowest priority)
    # 2) --arch argument
    # 3) --encoder/decoder-* arguments (highest priority)
    from unicore.models import ARCH_MODEL_REGISTRY
    group.add_argument('--arch', '-a', default='fconv', metavar='ARCH', required=True,
                       choices=ARCH_MODEL_REGISTRY.keys(),
                       help='Model Architecture')
    # fmt: on
    return group