utils.py 18.3 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# Copyright (c) DP Technology.
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import datetime
import io
import logging
import os
import pickle
import random
import socket
import struct
import subprocess
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Mapping, Optional
from dataclasses import dataclass

import torch
import torch.distributed as dist


logger = logging.getLogger(__name__)


def is_master(args):
    return args.distributed_rank == 0


def infer_init_method(args, force_distributed=False):
    if args.distributed_init_method is not None:
        return

    if all(
        key in os.environ
        for key in ["MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK"]
    ):
        # support torch.distributed.launch
        _infer_torch_distributed_launch_init(args)
    elif args.distributed_port > 0:
        # we can determine the init method automatically for Slurm
        _infer_slurm_init(args)
    elif args.distributed_world_size > 1 or force_distributed:
        # fallback for single node with multiple GPUs
        _infer_single_node_init(args)

    elif not args.distributed_no_spawn:
        args.distributed_num_procs = min(
            torch.cuda.device_count(), args.distributed_world_size
        )


def _infer_torch_distributed_launch_init(args):
    args.distributed_init_method = "env://"
    args.distributed_world_size = int(os.environ["WORLD_SIZE"])
    args.distributed_rank = int(os.environ["RANK"])
    # processes are created by torch.distributed.launch
    args.distributed_no_spawn = True


def _infer_slurm_init(args):
    node_list = os.environ.get("SLURM_STEP_NODELIST")
    if node_list is None:
        node_list = os.environ.get("SLURM_JOB_NODELIST")
    if node_list is not None:
        try:
            hostnames = subprocess.check_output(
                ["scontrol", "show", "hostnames", node_list]
            )
            args.distributed_init_method = "tcp://{host}:{port}".format(
                host=hostnames.split()[0].decode("utf-8"),
                port=args.distributed_port,
            )
            nnodes = int(os.environ.get("SLURM_NNODES"))
            ntasks_per_node = os.environ.get("SLURM_NTASKS_PER_NODE")
            if ntasks_per_node is not None:
                ntasks_per_node = int(ntasks_per_node)
            else:
                ntasks = int(os.environ.get("SLURM_NTASKS"))
                nnodes = int(os.environ.get("SLURM_NNODES"))
                assert ntasks % nnodes == 0
                ntasks_per_node = int(ntasks / nnodes)
            if ntasks_per_node == 1:
                gpus_per_node = torch.cuda.device_count()
                node_id = int(os.environ.get("SLURM_NODEID"))
                args.distributed_rank = node_id * gpus_per_node
                args.distributed_world_size = nnodes * gpus_per_node
            else:
                assert ntasks_per_node == args.distributed_world_size // nnodes
                args.distributed_no_spawn = True
                args.distributed_rank = int(os.environ.get("SLURM_PROCID"))
                args.device_id = int(os.environ.get("SLURM_LOCALID"))
        except subprocess.CalledProcessError as e:  # scontrol failed
            raise e
        except FileNotFoundError:  # Slurm is not installed
            pass


def _infer_single_node_init(args):
    assert (
        args.distributed_world_size <= torch.cuda.device_count()
    ), f"world size is {args.distributed_world_size} but have {torch.cuda.device_count()} available devices"
    port = random.randint(10000, 20000)
    args.distributed_init_method = "tcp://localhost:{port}".format(port=port)



def distributed_init(args):
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        warnings.warn(
            "Distributed is already initialized, cannot initialize twice!"
        )
    else:
        logger.info(
            "distributed init (rank {}): {}".format(
                args.distributed_rank,
                args.distributed_init_method,
            )
        )
        dist.init_process_group(
            backend=args.distributed_backend,
            init_method=args.distributed_init_method,
            world_size=args.distributed_world_size,
            rank=args.distributed_rank,
            timeout=datetime.timedelta(seconds=30),
        )
        logger.info(
            "initialized host {} as rank {}".format(
                socket.gethostname(),
                args.distributed_rank,
            )
        )

        # perform a dummy all-reduce to initialize the NCCL communicator
        if torch.cuda.is_available():
            dist.all_reduce(torch.zeros(1).cuda())

    args.distributed_rank = torch.distributed.get_rank()

    if is_master(args):
        logging.getLogger().setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(logging.WARNING)


    return args.distributed_rank


def distributed_main(i, main, args, kwargs):
    args.device_id = i
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    if args.distributed_rank is None:  # torch.multiprocessing.spawn
        args.distributed_rank = kwargs.pop("start_rank", 0) + i

    args.distributed_rank = distributed_init(args)

    after_distributed_init_fn = kwargs.pop("after_distributed_init_fn", None)
    if after_distributed_init_fn:
        args = after_distributed_init_fn(args)

    main(args, **kwargs)

    if torch.distributed.is_initialized():
        torch.distributed.barrier(get_global_group())


def call_main(args, main, **kwargs):
    if args.distributed_init_method is None:
        infer_init_method(args)

    if args.distributed_init_method is not None:
        # distributed training
        if not args.distributed_no_spawn:
            start_rank = args.distributed_rank
            args.distributed_rank = None  # assign automatically
            kwargs["start_rank"] = start_rank
            torch.multiprocessing.spawn(
                fn=distributed_main,
                args=(main, args, kwargs),
                nprocs=min(
                    torch.cuda.device_count(),
                    args.distributed_world_size,
                ),
                join=True,
            )
        else:
            distributed_main(args.device_id, main, args, kwargs)
    else:
        # single GPU main
        main(args, **kwargs)


def new_groups(grouped_ranks: List[List[int]]):
    groups = [dist.new_group(g) for g in grouped_ranks]
    my_group_idx = _find_my_group_index(grouped_ranks)
    return groups[my_group_idx]


def _find_my_group_index(grouped_ranks):
    my_rank = get_global_rank()
    for i, group in enumerate(grouped_ranks):
        if my_rank in group:
            return i
    raise RuntimeError


def _find_my_group(grouped_ranks):
    index = _find_my_group_index(grouped_ranks)
    return grouped_ranks[index]


def get_rank(group):
    return dist.get_rank(group=group)


def get_world_size(group):
    if torch.distributed.is_initialized():
        return dist.get_world_size(group=group)
    else:
        return 1


def get_global_group():
    if torch.distributed.is_initialized():
        if not hasattr(get_global_group, "_global_group"):
            # ideally we could use torch.distributed.group.WORLD, but it seems
            # to cause random NCCL hangs in some cases
            get_global_group._global_group = dist.new_group()
        return get_global_group._global_group
    else:
        return None


def get_global_rank():
    if torch.distributed.is_initialized():
        return torch.distributed.get_rank()
    else:
        return 0


def get_global_world_size():
    if torch.distributed.is_initialized():
        return torch.distributed.get_world_size()
    else:
        return 1


def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    return get_global_group()


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return get_rank(get_data_parallel_group())


def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return get_world_size(get_data_parallel_group())


def all_reduce(tensor, group, op="sum"):
    if op == "sum":
        op = dist.ReduceOp.SUM
    elif op == "max":
        op = dist.ReduceOp.MAX
    else:
        raise NotImplementedError
    dist.all_reduce(tensor, op=op, group=group)
    return tensor


def broadcast(tensor, src, group):
    dist.broadcast(tensor, src=src, group=group)


def all_to_all(tensor, group):
    """Perform an all-to-all operation on a 1D Tensor."""
    assert tensor.dim() == 1
    split_count = get_world_size(group=group)
    assert tensor.numel() % split_count == 0
    output = torch.zeros_like(tensor)
    dist.all_to_all_single(output, tensor, group=group)
    return output


def all_gather(tensor, group, return_tensor=False):
    """Perform an all-gather operation."""
    world_size = get_world_size(group=group)
    rank = get_rank(group=group)
    tensor_list = [
        tensor if i == rank else torch.empty_like(tensor) for i in range(world_size)
    ]
    dist.all_gather(tensor_list, tensor, group=group)
    if return_tensor:
        return torch.stack(tensor_list, dim=0)
    else:
        return tensor_list


def all_gather_list(data, group=None, max_size=16384):
    """Gathers arbitrary data from all nodes into a list.

    Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python
    data. Note that *data* must be picklable and any CUDA tensors will be moved
    to CPU and returned on CPU as well.

    Args:
        data (Any): data from the local worker to be gathered on other workers
        group: group of the collective
        max_size (int, optional): maximum size of the data to be gathered
            across workers
    """
    from unicore import utils

    if group is None:
        group = get_global_group()
    rank = get_rank(group=group)
    world_size = get_world_size(group=group)

    buffer_size = max_size * world_size
    if (
        not hasattr(all_gather_list, "_buffer")
        or all_gather_list._buffer.numel() < buffer_size
    ):
        all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size)
        all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory()
    buffer = all_gather_list._buffer
    buffer.zero_()
    cpu_buffer = all_gather_list._cpu_buffer

    data = utils.move_to_cpu(data)
    enc = pickle.dumps(data)
    enc_size = len(enc)
    header_size = 4  # size of header that contains the length of the encoded data
    size = header_size + enc_size
    if size > max_size:
        raise ValueError(
            "encoded data size ({}) exceeds max_size ({})".format(size, max_size)
        )

    header = struct.pack(">I", enc_size)
    cpu_buffer[:size] = torch.ByteTensor(list(header + enc))
    start = rank * max_size
    buffer[start : start + size].copy_(cpu_buffer[:size])

    all_reduce(buffer, group=group)

    buffer = buffer.cpu()
    try:
        result = []
        for i in range(world_size):
            out_buffer = buffer[i * max_size : (i + 1) * max_size]
            (enc_size,) = struct.unpack(">I", bytes(out_buffer[:header_size].tolist()))
            if enc_size > 0:
                result.append(
                    pickle.loads(
                        bytes(out_buffer[header_size : header_size + enc_size].tolist())
                    )
                )
        return result
    except pickle.UnpicklingError:
        raise Exception(
            "Unable to unpickle data from other workers. all_gather_list requires all "
            "workers to enter the function together, so this error usually indicates "
            "that the workers have fallen out of sync somehow. Workers can fall out of "
            "sync if one of them runs out of memory, or if there are other conditions "
            "in your training script that can cause one worker to finish an epoch "
            "while other workers are still iterating over their portions of the data. "
            "Try rerunning with --ddp-backend=legacy_ddp and see if that helps."
        )


def all_reduce_dict(data: Mapping[str, Any], device, group) -> Dict[str, Any]:
    """
    AllReduce a dictionary of values across workers. We separately
    reduce items that are already on the device and items on CPU for
    better performance.

    Args:
        data (Mapping[str, Any]): dictionary of data to all-reduce, but
            cannot be a nested dictionary
        device (torch.device): device for the reduction
        group: group of the collective
    """
    data_keys = list(data.keys())

    # We want to separately reduce items that are already on the
    # device and items on CPU for performance reasons.
    cpu_data = OrderedDict()
    device_data = OrderedDict()
    for k in data_keys:
        t = data[k]
        if not torch.is_tensor(t):
            cpu_data[k] = torch.tensor(t, dtype=torch.double)
        elif t.device.type != device.type:
            cpu_data[k] = t.to(dtype=torch.double)
        else:
            device_data[k] = t.to(dtype=torch.double)

    def _all_reduce_dict(data: OrderedDict):
        if len(data) == 0:
            return data
        buf = torch.cat([t.view(-1) for t in data.values()]).to(device=device)
        all_reduce(buf, group=group)
        split_buf = torch.split(buf, [t.numel() for t in data.values()])
        reduced_data = [t.view_as(orig) for t, orig in zip(split_buf, data.values())]
        return OrderedDict(zip(data.keys(), reduced_data))

    cpu_data = _all_reduce_dict(cpu_data)
    device_data = _all_reduce_dict(device_data)

    def get_from_stack(key):
        if key in cpu_data:
            return cpu_data[key]
        elif key in device_data:
            return device_data[key]
        raise KeyError

    return OrderedDict([(key, get_from_stack(key)) for key in data_keys])


@dataclass
class _TensorPlaceholder:
    index: int


def broadcast_tensors(
    tensors: Optional[List[torch.Tensor]],
    src_rank: int,
    group: object,
    dist_device: Optional[torch.device] = None,
) -> List[torch.Tensor]:
    """
    Broadcasts a list of tensors without other (non-src) ranks needing to know
    the dtypes/shapes of the tensors.
    """
    if dist_device is None:
        if torch.distributed.get_backend(group) == "nccl":
            dist_device = torch.device("cuda")
        else:
            dist_device = torch.device("cpu")

    # share metadata first to simplify transfer
    is_src_rank = get_rank(group) == src_rank
    if is_src_rank:
        metadata = [
            {"size": t.size(), "dtype": t.dtype, "device": t.device} for t in tensors
        ]
        metadata = _broadcast_object_slow(metadata, src_rank, group, dist_device)
    else:
        metadata = _broadcast_object_slow(None, src_rank, group, dist_device)

    out_tensors = []
    for i, meta in enumerate(metadata):
        if is_src_rank:
            tensor = tensors[i]
            broadcast(tensors[i].to(dist_device), src=src_rank, group=group)
        else:
            tensor = torch.zeros(
                [meta["size"].numel()], dtype=meta["dtype"], device=dist_device
            )
            broadcast(tensor, src=src_rank, group=group)
        tensor = tensor.view(meta["size"]).to(meta["device"])
        out_tensors.append(tensor)
    return out_tensors


def broadcast_object(
    obj: Any,
    src_rank: int,
    group: object,
    dist_device: Optional[torch.device] = None,
) -> Any:
    """Broadcast an arbitrary Python object to other workers."""
    if dist_device is None:
        if torch.distributed.get_backend(group) == "nccl":
            dist_device = torch.device("cuda")
        else:
            dist_device = torch.device("cpu")

    if get_rank(group) == src_rank:
        # split the tensors from the non-tensors so we can broadcast them
        # directly, avoiding unnecessary serialization/deserialization
        tensors = []
        obj = _split_tensors_from_obj(obj, tensors)
        obj = _broadcast_object_slow(obj, src_rank, group, dist_device)
        tensors = broadcast_tensors(tensors, src_rank, group, dist_device)
    else:
        obj = _broadcast_object_slow(None, src_rank, group, dist_device)
        tensors = broadcast_tensors(None, src_rank, group, dist_device)
    return _put_tensors_in_obj(obj, tensors)


def _broadcast_object_slow(
    obj: Any,
    src_rank: int,
    group: object,
    dist_device: torch.device,
) -> Any:
    if get_rank(group) == src_rank:
        # Emit data
        buffer = io.BytesIO()
        torch.save(obj, buffer)
        buffer = torch.ByteTensor(buffer.getbuffer()).to(dist_device)
        length = torch.LongTensor([len(buffer)]).to(dist_device)
        broadcast(length, src=src_rank, group=group)
        broadcast(buffer, src=src_rank, group=group)
    else:
        # Fetch from the source
        length = torch.LongTensor([0]).to(dist_device)
        broadcast(length, src=src_rank, group=group)
        buffer = torch.ByteTensor(int(length.item())).to(dist_device)
        broadcast(buffer, src=src_rank, group=group)
        buffer = io.BytesIO(buffer.cpu().numpy())
        obj = torch.load(buffer, map_location="cpu")
    return obj


def _split_tensors_from_obj(obj: Any, tensors: List[torch.Tensor]) -> Any:
    if torch.is_tensor(obj):
        placeholder = _TensorPlaceholder(index=len(tensors))
        tensors.append(obj)
        return placeholder
    elif isinstance(obj, dict):
        return {k: _split_tensors_from_obj(v, tensors) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [_split_tensors_from_obj(v, tensors) for v in obj]
    elif isinstance(obj, tuple):
        return tuple(_split_tensors_from_obj(v, tensors) for v in obj)
    elif isinstance(obj, set):
        return {_split_tensors_from_obj(v, tensors) for v in obj}
    else:
        return obj


def _put_tensors_in_obj(obj: Any, tensors: List[torch.Tensor]) -> Any:
    if isinstance(obj, _TensorPlaceholder):
        return tensors[obj.index]
    elif isinstance(obj, dict):
        return {k: _put_tensors_in_obj(v, tensors) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [_put_tensors_in_obj(v, tensors) for v in obj]
    elif isinstance(obj, tuple):
        return tuple(_put_tensors_in_obj(v, tensors) for v in obj)
    elif isinstance(obj, set):
        return {_put_tensors_in_obj(v, tensors) for v in obj}
    else:
        return obj