test_softmax.py 5.08 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn.functional as F
from unicore.modules import softmax_dropout


def gen_attn_mask(mask, neg_inf):
    assert neg_inf < -1e4
    attn_mask = torch.zeros_like(mask)
    attn_mask[mask == 0] = neg_inf
    return attn_mask


def normal_softmax(a, mask, bias):
    return F.softmax(a + mask + bias, dim=-1)


def fused_softmax(a, mask, bias):
    return softmax_dropout(a, 0, True, mask=mask, bias=bias)


def wrap_forward_backward(func, a1, mask, bias1):
    a = a1.clone()
    bias = bias1.clone()
    a.requires_grad = True
    bias.requires_grad = True
    output = func(a, mask, bias)
    o = output.float().sum()
    o.backward()
    return output, a.grad, bias.grad


def check_diff(a, b, name, eps=1e-3):
    assert (a - b).abs().max() < eps, "name {}, diff {}".format(
        name, (a - b).abs().max()
    )


def test_softmax():
    n_batch = 4
    n_heads = 8
    n_query = 128
    test_dims = [64, 128, 256, 512, 1024, 1536, 2048]
    test_dtype = [torch.float32, torch.float16, torch.bfloat16]
    test_device = torch.device("cuda")
    for last_dim in test_dims:
        for dtype in test_dtype:
            x = torch.rand(
                n_batch,
                n_heads,
                n_query,
                last_dim,
                dtype=dtype,
                device=test_device,
            )
            mask = gen_attn_mask(
                (
                    torch.rand(
                        n_batch,
                        1,
                        1,
                        last_dim,
                        dtype=dtype,
                        device=test_device,
                    )
                    > 0.2
                ).type(x.dtype),
                -3e4,
            )
            bias = torch.rand(
                n_batch, n_heads, n_query, last_dim, dtype=dtype, device=test_device
            )
            out_a1, out_b1, out_c1 = wrap_forward_backward(
                normal_softmax, x, mask, bias
            )
            out_a2, out_b2, out_c2 = wrap_forward_backward(fused_softmax, x, mask, bias)
            check_diff(out_a1, out_a2, "output")
            check_diff(out_b1, out_b2, "grad_input")
            check_diff(out_c1, out_c2, "grad_bias")


def test_tri_softmax1():
    n_batch = 2
    n_groups = 32
    n_heads = 8
    n_query = 128
    test_dims = [64, 128, 256, 512, 1024, 1536, 2048]
    test_dtype = [torch.float32, torch.float16, torch.bfloat16]
    test_device = torch.device("cuda")
    for last_dim in test_dims:
        for dtype in test_dtype:
            x = torch.rand(
                n_batch,
                n_groups,
                n_heads,
                n_query,
                last_dim,
                dtype=dtype,
                device=test_device,
            )
            mask = gen_attn_mask(
                (
                    torch.rand(
                        n_batch,
                        n_groups,
                        1,
                        1,
                        last_dim,
                        dtype=dtype,
                        device=test_device,
                    )
                    > 0.2
                ).type(x.dtype),
                -3e4,
            )
            bias = torch.rand(
                1, 1, n_heads, n_query, last_dim, dtype=dtype, device=test_device
            )
            out_a1, out_b1, out_c1 = wrap_forward_backward(
                normal_softmax, x, mask, bias
            )
            out_a2, out_b2, out_c2 = wrap_forward_backward(fused_softmax, x, mask, bias)
            check_diff(out_a1, out_a2, "output")
            check_diff(out_b1, out_b2, "grad_input")
            check_diff(out_c1, out_c2, "grad_bias")


def test_tri_softmax2():
    n_batch = 2
    n_groups = 32
    n_heads = 8
    n_query = 128
    test_dims = [64, 128, 256, 512, 1024, 1536, 2048]
    test_dtype = [torch.float32, torch.float16, torch.bfloat16]
    test_device = torch.device("cuda")
    for last_dim in test_dims:
        for dtype in test_dtype:
            x = torch.rand(
                n_batch,
                n_groups,
                n_heads,
                n_query,
                last_dim,
                dtype=dtype,
                device=test_device,
            )
            mask = gen_attn_mask(
                (
                    torch.rand(
                        n_batch,
                        n_groups,
                        n_heads,
                        1,
                        last_dim,
                        dtype=dtype,
                        device=test_device,
                    )
                    > 0.2
                ).type(x.dtype),
                -3e4,
            )
            bias = torch.rand(
                1, n_groups, n_heads, n_query, last_dim, dtype=dtype, device=test_device
            )
            out_a1, out_b1, out_c1 = wrap_forward_backward(
                normal_softmax, x, mask, bias
            )
            out_a2, out_b2, out_c2 = wrap_forward_backward(fused_softmax, x, mask, bias)
            check_diff(out_a1, out_a2, "output")
            check_diff(out_b1, out_b2, "grad_input")
            check_diff(out_c1, out_c2, "grad_bias")