model.py 9.42 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright (c) DP Technology.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
from unicore import utils
from unicore.models import BaseUnicoreModel, register_model, register_model_architecture
from unicore.modules import LayerNorm, TransformerEncoder, init_bert_params


logger = logging.getLogger(__name__)


@register_model("bert")
class BertModel(BaseUnicoreModel):

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        parser.add_argument(
            "--encoder-layers", type=int, metavar="L", help="num encoder layers"
        )
        parser.add_argument(
            "--encoder-embed-dim",
            type=int,
            metavar="H",
            help="encoder embedding dimension",
        )
        parser.add_argument(
            "--encoder-ffn-embed-dim",
            type=int,
            metavar="F",
            help="encoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--encoder-attention-heads",
            type=int,
            metavar="A",
            help="num encoder attention heads",
        )
        parser.add_argument(
            "--activation-fn",
            choices=utils.get_available_activation_fns(),
            help="activation function to use",
        )
        parser.add_argument(
            "--pooler-activation-fn",
            choices=utils.get_available_activation_fns(),
            help="activation function to use for pooler layer",
        )
        parser.add_argument(
            "--emb-dropout", type=float, metavar="D", help="dropout probability for embeddings"
        )
        parser.add_argument(
            "--dropout", type=float, metavar="D", help="dropout probability"
        )
        parser.add_argument(
            "--attention-dropout",
            type=float,
            metavar="D",
            help="dropout probability for attention weights",
        )
        parser.add_argument(
            "--activation-dropout",
            type=float,
            metavar="D",
            help="dropout probability after activation in FFN",
        )
        parser.add_argument(
            "--pooler-dropout",
            type=float,
            metavar="D",
            help="dropout probability in the masked_lm pooler layers",
        )
        parser.add_argument(
            "--max-seq-len", type=int, help="number of positional embeddings to learn"
        )
        parser.add_argument(
            "--post-ln", type=bool, help="use post layernorm or pre layernorm"
        )


    def __init__(self, args, dictionary):
        super().__init__()
        base_architecture(args)
        self.args = args
        self.padding_idx = dictionary.pad()
        self.embed_tokens = nn.Embedding(len(dictionary), args.encoder_embed_dim, self.padding_idx)
        self.embed_positions = nn.Embedding(args.max_seq_len, args.encoder_embed_dim)
        self.sentence_encoder = TransformerEncoder(
            encoder_layers=args.encoder_layers,
            embed_dim=args.encoder_embed_dim,
            ffn_embed_dim=args.encoder_ffn_embed_dim,
            attention_heads=args.encoder_attention_heads,
            emb_dropout=args.emb_dropout,
            dropout=args.dropout,
            attention_dropout=args.attention_dropout,
            activation_dropout=args.activation_dropout,
            max_seq_len=args.max_seq_len,
            activation_fn=args.activation_fn,
            rel_pos=True,
            rel_pos_bins=32,
            max_rel_pos=128,
            post_ln=args.post_ln,
        )

        self.lm_head = BertLMHead(embed_dim=args.encoder_embed_dim,
            output_dim=len(dictionary),
            activation_fn=args.activation_fn,
            weight=self.embed_tokens.weight,
        )
        self.classification_heads = nn.ModuleDict()
        self.apply(init_bert_params)

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""
        return cls(args, task.dictionary)

    def forward(
        self,
        src_tokens,
        masked_tokens,
        features_only=False,
        classification_head_name=None,
        **kwargs
    ):
        if classification_head_name is not None:
            features_only = True
        padding_mask = src_tokens.eq(self.padding_idx)
        if not padding_mask.any():
            padding_mask = None
        x = self.embed_tokens(src_tokens)
        x += self.embed_positions.weight[:src_tokens.size(1), :]
        x = self.sentence_encoder(x, padding_mask=padding_mask)
        if not features_only:
            x = self.lm_head(x, masked_tokens)
        if classification_head_name is not None:
            x = self.classification_heads[classification_head_name](x)
        return x

    def register_classification_head(
        self, name, num_classes=None, inner_dim=None, **kwargs
    ):
        """Register a classification head."""
        if name in self.classification_heads:
            prev_num_classes = self.classification_heads[name].out_proj.out_features
            prev_inner_dim = self.classification_heads[name].dense.out_features
            if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
                logger.warning(
                    're-registering head "{}" with num_classes {} (prev: {}) '
                    "and inner_dim {} (prev: {})".format(
                        name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
                    )
                )
        self.classification_heads[name] = BertClassificationHead(
            input_dim=self.args.encoder_embed_dim,
            inner_dim=inner_dim or self.args.encoder_embed_dim,
            num_classes=num_classes,
            activation_fn=self.args.pooler_activation_fn,
            pooler_dropout=self.args.pooler_dropout,
        )


class BertLMHead(nn.Module):
    """Head for masked language modeling."""

    def __init__(self, embed_dim, output_dim, activation_fn, weight=None):
        super().__init__()
        self.dense = nn.Linear(embed_dim, embed_dim)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.layer_norm = LayerNorm(embed_dim)

        if weight is None:
            weight = nn.Linear(embed_dim, output_dim, bias=False).weight
        self.weight = weight
        self.bias = nn.Parameter(torch.zeros(output_dim))

    def forward(self, features, masked_tokens=None, **kwargs):
        # Only project the masked tokens while training,
        # saves both memory and computation
        if masked_tokens is not None:
            features = features[masked_tokens, :]

        x = self.dense(features)
        x = self.activation_fn(x)
        x = self.layer_norm(x)
        # project back to size of vocabulary with bias
        x = F.linear(x, self.weight) + self.bias
        return x


class BertClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(
        self,
        input_dim,
        inner_dim,
        num_classes,
        activation_fn,
        pooler_dropout,
    ):
        super().__init__()
        self.dense = nn.Linear(input_dim, inner_dim)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes), q_noise, qn_block_size

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = self.activation_fn(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x

@register_model_architecture("bert", "bert")
def base_architecture(args):
    args.encoder_layers = getattr(args, "encoder_layers", 12)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
    args.dropout = getattr(args, "dropout", 0.1)
    args.emb_dropout = getattr(args, "emb_dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)
    args.max_seq_len = getattr(args, "max_seq_len", 512)
    args.activation_fn = getattr(args, "activation_fn", "gelu")
    args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
    args.post_ln = getattr(args, "post_ln", True)


@register_model_architecture("bert", "bert_base")
def bert_base_architecture(args):
    base_architecture(args)


@register_model_architecture("bert", "bert_large")
def bert_large_architecture(args):
    args.encoder_layers = getattr(args, "encoder_layers", 24)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    base_architecture(args)


@register_model_architecture("bert", "xlm")
def xlm_architecture(args):
    args.encoder_layers = getattr(args, "encoder_layers", 16)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1280)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1280 * 4)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    base_architecture(args)