target_transforms.py 13.4 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np


class PanopticTargetGenerator(object):
    """
    Generates panoptic training target for Panoptic-DeepLab.
    Annotation is assumed to have Cityscapes format.

    Args:
        ignore_index (int): The ignore label for semantic segmentation.
        rgb2id (Function): Function, panoptic label is encoded in a colored image, this function convert color to the
            corresponding panoptic label.
        thing_list (list): A list of thing classes
        sigma (int, optional): The sigma for Gaussian kernel. Default: 8.
        ignore_stuff_in_offset (bool, optional): Whether to ignore stuff region when training the offset branch. Default: False.
        small_instance_area (int, optional): Indicates largest area for small instances. Default: 0.
        small_instance_weight (int, optional): Indicates semantic loss weights for small instances. Default: 1.
        ignore_crowd_in_semantic (bool, optional): Whether to ignore crowd region in semantic segmentation branch,
            crowd region is ignored in the original TensorFlow implementation. Default: False.
    """

    def __init__(self,
                 ignore_index,
                 rgb2id,
                 thing_list,
                 sigma=8,
                 ignore_stuff_in_offset=False,
                 small_instance_area=0,
                 small_instance_weight=1,
                 ignore_crowd_in_semantic=False):
        self.ignore_index = ignore_index
        self.rgb2id = rgb2id
        self.thing_list = thing_list
        self.ignore_stuff_in_offset = ignore_stuff_in_offset
        self.small_instance_area = small_instance_area
        self.small_instance_weight = small_instance_weight
        self.ignore_crowd_in_semantic = ignore_crowd_in_semantic

        self.sigma = sigma
        size = 6 * sigma + 3
        x = np.arange(0, size, 1, float)
        y = x[:, np.newaxis]
        x0, y0 = 3 * sigma + 1, 3 * sigma + 1
        self.g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))

    def __call__(self, panoptic, segments):
        """Generates the training target.
        reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createPanopticImgs.py
        reference: https://github.com/facebookresearch/detectron2/blob/master/datasets/prepare_panoptic_fpn.py#L18

        Args:
            panoptic (np.ndarray): Colored image encoding panoptic label.
            segments (list): A list of dictionary containing information of every segment, it has fields:
                - id: panoptic id, after decoding `panoptic`.
                - category_id: semantic class id.
                - area: segment area.
                - bbox: segment bounding box.
                - iscrowd: crowd region.

        Returns:
            A dictionary with fields:
                - semantic: Tensor, semantic label, shape=(H, W).
                - foreground: Tensor, foreground mask label, shape=(H, W).
                - center: Tensor, center heatmap, shape=(1, H, W).
                - center_points: List, center coordinates, with tuple (y-coord, x-coord).
                - offset: Tensor, offset, shape=(2, H, W), first dim is (offset_y, offset_x).
                - semantic_weights: Tensor, loss weight for semantic prediction, shape=(H, W).
                - center_weights: Tensor, ignore region of center prediction, shape=(H, W), used as weights for center
                    regression 0 is ignore, 1 is has instance. Multiply this mask to loss.
                - offset_weights: Tensor, ignore region of offset prediction, shape=(H, W), used as weights for offset
                    regression 0 is ignore, 1 is has instance. Multiply this mask to loss.
        """
        panoptic = self.rgb2id(panoptic)
        height, width = panoptic.shape[0], panoptic.shape[1]
        semantic = np.zeros_like(panoptic, dtype=np.uint8) + self.ignore_index
        foreground = np.zeros_like(panoptic, dtype=np.uint8)
        center = np.zeros((1, height, width), dtype=np.float32)
        center_pts = []
        offset = np.zeros((2, height, width), dtype=np.float32)
        y_coord = np.ones_like(panoptic, dtype=np.float32)
        x_coord = np.ones_like(panoptic, dtype=np.float32)
        y_coord = np.cumsum(y_coord, axis=0) - 1
        x_coord = np.cumsum(x_coord, axis=1) - 1
        # Generate pixel-wise loss weights
        semantic_weights = np.ones_like(panoptic, dtype=np.uint8)
        # 0: ignore, 1: has instance
        # three conditions for a region to be ignored for instance branches:
        # (1) It is labeled as `ignore_index`
        # (2) It is crowd region (iscrowd=1)
        # (3) (Optional) It is stuff region (for offset branch)
        center_weights = np.zeros_like(panoptic, dtype=np.uint8)
        offset_weights = np.zeros_like(panoptic, dtype=np.uint8)
        for seg in segments:
            cat_id = seg["category_id"]
            if self.ignore_crowd_in_semantic:
                if not seg['iscrowd']:
                    semantic[panoptic == seg["id"]] = cat_id
            else:
                semantic[panoptic == seg["id"]] = cat_id
            if cat_id in self.thing_list:
                foreground[panoptic == seg["id"]] = 1
            if not seg['iscrowd']:
                # Ignored regions are not in `segments`.
                # Handle crowd region.
                center_weights[panoptic == seg["id"]] = 1
                if self.ignore_stuff_in_offset:
                    # Handle stuff region.
                    if cat_id in self.thing_list:
                        offset_weights[panoptic == seg["id"]] = 1
                else:
                    offset_weights[panoptic == seg["id"]] = 1
            if cat_id in self.thing_list:
                # find instance center
                mask_index = np.where(panoptic == seg["id"])
                if len(mask_index[0]) == 0:
                    # the instance is completely cropped
                    continue

                # Find instance area
                ins_area = len(mask_index[0])
                if ins_area < self.small_instance_area:
                    semantic_weights[panoptic ==
                                     seg["id"]] = self.small_instance_weight

                center_y, center_x = np.mean(mask_index[0]), np.mean(mask_index[
                    1])
                center_pts.append([center_y, center_x])

                # generate center heatmap
                y, x = int(center_y), int(center_x)
                # outside image boundary
                if x < 0 or y < 0 or \
                        x >= width or y >= height:
                    continue
                sigma = self.sigma
                # upper left
                ul = int(np.round(x - 3 * sigma - 1)), int(
                    np.round(y - 3 * sigma - 1))
                # bottom right
                br = int(np.round(x + 3 * sigma + 2)), int(
                    np.round(y + 3 * sigma + 2))

                c, d = max(0, -ul[0]), min(br[0], width) - ul[0]
                a, b = max(0, -ul[1]), min(br[1], height) - ul[1]

                cc, dd = max(0, ul[0]), min(br[0], width)
                aa, bb = max(0, ul[1]), min(br[1], height)
                center[0, aa:bb, cc:dd] = np.maximum(center[0, aa:bb, cc:dd],
                                                     self.g[a:b, c:d])

                # generate offset (2, h, w) -> (y-dir, x-dir)
                offset_y_index = (np.zeros_like(mask_index[0]), mask_index[0],
                                  mask_index[1])
                offset_x_index = (np.ones_like(mask_index[0]), mask_index[0],
                                  mask_index[1])
                offset[offset_y_index] = center_y - y_coord[mask_index]
                offset[offset_x_index] = center_x - x_coord[mask_index]

        return dict(
            semantic=semantic.astype('long'),
            foreground=foreground.astype('long'),
            center=center.astype(np.float32),
            center_points=center_pts,
            offset=offset.astype(np.float32),
            semantic_weights=semantic_weights.astype(np.float32),
            center_weights=center_weights.astype(np.float32),
            offset_weights=offset_weights.astype(np.float32))


class SemanticTargetGenerator(object):
    """
    Generates semantic training target only for Panoptic-DeepLab (no instance).
    Annotation is assumed to have Cityscapes format.

    Args:
        ignore_index (int): The ignore label for semantic segmentation.
        rgb2id (function): Function, panoptic label is encoded in a colored image, this function convert color to the
            corresponding panoptic label.
    """

    def __init__(self, ignore_index, rgb2id):
        self.ignore_index = ignore_index
        self.rgb2id = rgb2id

    def __call__(self, panoptic, segments):
        """Generates the training target.
        reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createPanopticImgs.py
        reference: https://github.com/facebookresearch/detectron2/blob/master/datasets/prepare_panoptic_fpn.py#L18

        Args:
            panoptic (np.ndarray): Colored image encoding panoptic label.
            segments (list): A list of dictionary containing information of every segment, it has fields:
                - id: panoptic id, after decoding `panoptic`.
                - category_id: semantic class id.
                - area: segment area.
                - bbox: segment bounding box.
                - iscrowd: crowd region.

        Returns:
            A dictionary with fields:
                - semantic: Tensor, semantic label, shape=(H, W).
        """
        panoptic = self.rgb2id(panoptic)
        semantic = np.zeros_like(panoptic, dtype=np.uint8) + self.ignore_index
        for seg in segments:
            cat_id = seg["category_id"]
            semantic[panoptic == seg["id"]] = cat_id

        return dict(semantic=semantic.astype('long'))


class InstanceTargetGenerator(object):
    """
    Generates instance target only for Panoptic-DeepLab.
    Annotation is assumed to have Cityscapes format.

    Args:
        rgb2id (function): Function, panoptic label is encoded in a colored image, this function convert color to the
            corresponding panoptic label.
    """

    def __init__(self, rgb2id):
        self.rgb2id = rgb2id

    def __call__(self, panoptic):
        """Generates the instance target.

        Args:
            panoptic (np.ndarray): Colored image encoding panoptic label.

        Returns:
            A dictionary with fields:
                - instance: Tensor, shape=(H, W). 0 is background. 1, 2, 3 ... is instance, so it is class agnostic.
        """
        panoptic = self.rgb2id(panoptic)
        instance = np.zeros_like(panoptic, dtype=np.int64)
        ids = np.unique(panoptic)
        ins_id = 1
        for i, id in enumerate(ids):
            if id > 1000:
                instance[panoptic == id] = ins_id
                ins_id += 1

        return dict(instance=instance)


class RawPanopticTargetGenerator(object):
    """
    Generator the panoptc ground truth for evaluation, where values are 0,1,2,3,...
        11000, 11001, ..., 18000, 18001, ignore_index(general 255).

    Args:
        ignore_index (int): The ignore label for semantic segmentation.
        rgb2id (function): Function, panoptic label is encoded in a colored image, this function convert color to the
            corresponding panoptic label.
        label_divisor(int, optional): An Integer, used to convert panoptic id = semantic id * label_divisor + instance_id. Default: 1000.
    """

    def __init__(self, ignore_index, rgb2id, label_divisor=1000):
        self.ingore_index = ignore_index
        self.rgb2id = rgb2id
        self.label_divisor = label_divisor

    def __call__(self, panoptic, segments):
        """
        Generates the raw panoptic target

        Args:
            panoptic (numpy.array): colored image encoding panoptic label.
            segments (list): A list of dictionary containing information of every segment, it has fields:
                - id: panoptic id, after decoding `panoptic`.
                - category_id: semantic class id.
                - area: segment area.
                - bbox: segment bounding box.
                - iscrowd: crowd region.

        Returns:
            A dictionary with fields:
                - panoptic: Tensor, panoptic label, shape=(H, W).
        """
        panoptic = self.rgb2id(panoptic)
        raw_panoptic = np.zeros_like(panoptic) + self.ingore_index
        for seg in segments:
            cat_id = seg['category_id']
            # if seg['iscrowd'] == 1:
            #     continue
            if seg['id'] < 1000:
                raw_panoptic[panoptic == seg['id']] = cat_id
            else:
                ins_id = seg['id'] % self.label_divisor
                raw_panoptic[panoptic ==
                             seg['id']] = cat_id * self.label_divisor + ins_id
        return dict(panoptic=raw_panoptic.astype('long'))