val.py 7.2 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from collections import OrderedDict

import numpy as np
import time
import paddle
import paddle.nn.functional as F
from paddleseg.utils import TimeAverager, calculate_eta, logger, progbar

from utils.evaluation import SemanticEvaluator, InstanceEvaluator, PanopticEvaluator
from core import infer

np.set_printoptions(suppress=True)


def evaluate(model,
             eval_dataset,
             threshold=0.1,
             nms_kernel=7,
             top_k=200,
             num_workers=0,
             print_detail=True):
    """
    Launch evaluation.

    Args:
        model(nn.Layer): A sementic segmentation model.
        eval_dataset (paddle.io.Dataset): Used to read and process validation datasets.
        threshold (float, optional): Threshold applied to center heatmap score. Defalut: 0.1.
        nms_kernel (int, optional): NMS max pooling kernel size. Default: 7.
        top_k (int, optional): Top k centers to keep. Default: 200.
        num_workers (int, optional): Num workers for data loader. Default: 0.
        print_detail (bool, optional): Whether to print detailed information about the evaluation process. Default: True.

    Returns:
        dict: Panoptic evaluation results which includes PQ, RQ, SQ for all, each class, Things and stuff.
        dict: Semantic evaluation results which includes mIoU, fwIoU, mACC and pACC.
        dict: Instance evaluation results which includes mAP and mAP50, and also AP and AP50 for each class.

    """
    model.eval()
    nranks = paddle.distributed.ParallelEnv().nranks
    local_rank = paddle.distributed.ParallelEnv().local_rank
    batch_sampler = paddle.io.BatchSampler(
        eval_dataset, batch_size=1, shuffle=False, drop_last=False)
    loader = paddle.io.DataLoader(
        eval_dataset,
        batch_sampler=batch_sampler,
        num_workers=num_workers,
        return_list=True, )

    total_iters = len(loader)
    semantic_metric = SemanticEvaluator(
        eval_dataset.num_classes, ignore_index=eval_dataset.ignore_index)
    instance_metric_AP50 = InstanceEvaluator(
        eval_dataset.num_classes,
        overlaps=0.5,
        thing_list=eval_dataset.thing_list)
    instance_metric_AP = InstanceEvaluator(
        eval_dataset.num_classes,
        overlaps=list(np.arange(0.5, 1.0, 0.05)),
        thing_list=eval_dataset.thing_list)
    panoptic_metric = PanopticEvaluator(
        num_classes=eval_dataset.num_classes,
        thing_list=eval_dataset.thing_list,
        ignore_index=eval_dataset.ignore_index,
        label_divisor=eval_dataset.label_divisor)

    if print_detail:
        logger.info("Start evaluating (total_samples={}, total_iters={})...".
                    format(len(eval_dataset), total_iters))
    progbar_val = progbar.Progbar(target=total_iters, verbose=1)
    reader_cost_averager = TimeAverager()
    batch_cost_averager = TimeAverager()
    batch_start = time.time()
    with paddle.no_grad():
        for iter, data in enumerate(loader):
            reader_cost_averager.record(time.time() - batch_start)
            im = data[0]
            raw_semantic_label = data[1]  # raw semantic label.
            raw_instance_label = data[2]
            raw_panoptic_label = data[3]
            ori_shape = raw_semantic_label.shape[-2:]

            semantic, semantic_softmax, instance, panoptic, ctr_hmp = infer.inference(
                model=model,
                im=im,
                transforms=eval_dataset.transforms.transforms,
                thing_list=eval_dataset.thing_list,
                label_divisor=eval_dataset.label_divisor,
                stuff_area=eval_dataset.stuff_area,
                ignore_index=eval_dataset.ignore_index,
                threshold=threshold,
                nms_kernel=nms_kernel,
                top_k=top_k,
                ori_shape=ori_shape)
            semantic = semantic.squeeze().numpy()
            semantic_softmax = semantic_softmax.squeeze().numpy()
            instance = instance.squeeze().numpy()
            panoptic = panoptic.squeeze().numpy()
            ctr_hmp = ctr_hmp.squeeze().numpy()
            raw_semantic_label = raw_semantic_label.squeeze().numpy()
            raw_instance_label = raw_instance_label.squeeze().numpy()
            raw_panoptic_label = raw_panoptic_label.squeeze().numpy()

            # update metric for semantic, instance, panoptic
            semantic_metric.update(semantic, raw_semantic_label)

            gts = instance_metric_AP.convert_gt_map(raw_semantic_label,
                                                    raw_instance_label)
            # print([i[0] for i in gts])
            preds = instance_metric_AP.convert_pred_map(semantic_softmax,
                                                        panoptic)
            # print([(i[0], i[1]) for i in preds ])
            ignore_mask = raw_semantic_label == eval_dataset.ignore_index
            instance_metric_AP.update(preds, gts, ignore_mask=ignore_mask)
            instance_metric_AP50.update(preds, gts, ignore_mask=ignore_mask)

            panoptic_metric.update(panoptic, raw_panoptic_label)

            batch_cost_averager.record(
                time.time() - batch_start, num_samples=len(im))
            batch_cost = batch_cost_averager.get_average()
            reader_cost = reader_cost_averager.get_average()

            if local_rank == 0:
                progbar_val.update(iter + 1, [('batch_cost', batch_cost),
                                              ('reader cost', reader_cost)])
            reader_cost_averager.reset()
            batch_cost_averager.reset()
            batch_start = time.time()

    semantic_results = semantic_metric.evaluate()
    panoptic_results = panoptic_metric.evaluate()
    instance_results = OrderedDict()
    ins_ap = instance_metric_AP.evaluate()
    ins_ap50 = instance_metric_AP50.evaluate()
    instance_results['ins_seg'] = OrderedDict()
    instance_results['ins_seg']['mAP'] = ins_ap['ins_seg']['mAP']
    instance_results['ins_seg']['AP'] = ins_ap['ins_seg']['AP']
    instance_results['ins_seg']['mAP50'] = ins_ap50['ins_seg']['mAP']
    instance_results['ins_seg']['AP50'] = ins_ap50['ins_seg']['AP']

    if print_detail:
        logger.info(panoptic_results)
        print()
        logger.info(semantic_results)
        print()
        logger.info(instance_results)
        print()

        pq = panoptic_results['pan_seg']['All']['pq']
        miou = semantic_results['sem_seg']['mIoU']
        map = instance_results['ins_seg']['mAP']
        map50 = instance_results['ins_seg']['mAP50']
        logger.info("PQ: {:.4f}, mIoU: {:.4f}, mAP: {:.4f}, mAP50: {:.4f}".
                    format(pq, miou, map, map50))

    return panoptic_results, semantic_results, instance_results