infer.py 14.1 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections.abc
from itertools import combinations
from functools import partial

import numpy as np
import paddle
import paddle.nn.functional as F


def get_reverse_list(ori_shape, transforms):
    """
    get reverse list of transform.

    Args:
        ori_shape (list): Origin shape of image.
        transforms (list): List of transform.

    Returns:
        list: List of tuple, there are two format:
            ('resize', (h, w)) The image shape before resize,
            ('padding', (h, w)) The image shape before padding.
    """
    reverse_list = []
    h, w = ori_shape[0], ori_shape[1]
    for op in transforms:
        if op.__class__.__name__ in ['Resize']:
            reverse_list.append(('resize', (h, w)))
            h, w = op.target_size[0], op.target_size[1]
        if op.__class__.__name__ in ['ResizeByLong']:
            reverse_list.append(('resize', (h, w)))
            long_edge = max(h, w)
            short_edge = min(h, w)
            short_edge = int(round(short_edge * op.long_size / long_edge))
            long_edge = op.long_size
            if h > w:
                h = long_edge
                w = short_edge
            else:
                w = long_edge
                h = short_edge
        if op.__class__.__name__ in ['Padding']:
            reverse_list.append(('padding', (h, w)))
            w, h = op.target_size[0], op.target_size[1]
        if op.__class__.__name__ in ['LimitLong']:
            long_edge = max(h, w)
            short_edge = min(h, w)
            if ((op.max_long is not None) and (long_edge > op.max_long)):
                reverse_list.append(('resize', (h, w)))
                long_edge = op.max_long
                short_edge = int(round(short_edge * op.max_long / long_edge))
            elif ((op.min_long is not None) and (long_edge < op.min_long)):
                reverse_list.append(('resize', (h, w)))
                long_edge = op.min_long
                short_edge = int(round(short_edge * op.min_long / long_edge))
            if h > w:
                h = long_edge
                w = short_edge
            else:
                w = long_edge
                h = short_edge
    return reverse_list


def reverse_transform(pred, ori_shape, transforms):
    """recover pred to origin shape"""
    reverse_list = get_reverse_list(ori_shape, transforms)
    for item in reverse_list[::-1]:
        if item[0] == 'resize':
            h, w = item[1][0], item[1][1]
            pred = F.interpolate(pred, (h, w), mode='nearest')
        elif item[0] == 'padding':
            h, w = item[1][0], item[1][1]
            pred = pred[:, :, 0:h, 0:w]
        else:
            raise Exception("Unexpected info '{}' in im_info".format(item[0]))
    return pred


def find_instance_center(ctr_hmp, threshold=0.1, nms_kernel=3, top_k=None):
    """
    Find the center points from the center heatmap.

    Args:
        ctr_hmp (Tensor): A Tensor of shape [1, H, W] of raw center heatmap output.
        threshold (float, optional): Threshold applied to center heatmap score. Default: 0.1.
        nms_kernel (int, optional): NMS max pooling kernel size. Default: 3.
        top_k (int, optional): An Integer, top k centers to keep. Default: None

    Returns:
        Tensor: A Tensor of shape [K, 2] where K is the number of center points. The order of second dim is (y, x).
    """
    # thresholding, setting values below threshold to 0
    ctr_hmp = F.thresholded_relu(ctr_hmp, threshold)

    #NMS
    nms_padding = (nms_kernel - 1) // 2
    ctr_hmp = ctr_hmp.unsqueeze(0)
    ctr_hmp_max_pooled = F.max_pool2d(
        ctr_hmp, kernel_size=nms_kernel, stride=1, padding=nms_padding)
    ctr_hmp = ctr_hmp * (ctr_hmp_max_pooled == ctr_hmp)

    ctr_hmp = ctr_hmp.squeeze((0, 1))
    if len(ctr_hmp.shape) != 2:
        raise ValueError('Something is wrong with center heatmap dimension.')

    if top_k is None:
        top_k_score = 0
    else:
        top_k_score, _ = paddle.topk(paddle.flatten(ctr_hmp), top_k)
        top_k_score = top_k_score[-1]
    # non-zero points are candidate centers
    ctr_hmp_k = (ctr_hmp > top_k_score[-1]).astype('int64')
    if ctr_hmp_k.sum() == 0:
        ctr_all = None
    else:
        ctr_all = paddle.nonzero(ctr_hmp_k)
    return ctr_all


def group_pixels(ctr, offsets):
    """
    Gives each pixel in the image an instance id.

    Args:
        ctr (Tensor): A Tensor of shape [K, 2] where K is the number of center points. The order of second dim is (y, x).
        offsets (Tensor): A Tensor of shape [2, H, W] of raw offset output, where N is the batch size,
            for consistent, we only support N=1. The order of second dim is (offset_y, offset_x).

    Returns:
        Tensor: A Tensor of shape [1, H, W], ins_id is 1, 2, ...
    """
    height, width = offsets.shape[-2:]
    y_coord = paddle.arange(height, dtype=offsets.dtype).reshape([1, -1, 1])
    y_coord = paddle.concat([y_coord] * width, axis=2)
    x_coord = paddle.arange(width, dtype=offsets.dtype).reshape([1, 1, -1])
    x_coord = paddle.concat([x_coord] * height, axis=1)
    coord = paddle.concat([y_coord, x_coord], axis=0)

    ctr_loc = coord + offsets
    ctr_loc = ctr_loc.reshape((2, height * width)).transpose((1, 0))

    # ctr: [K, 2] -> [K, 1, 2]
    # ctr_loc = [H*W, 2] -> [1, H*W, 2]
    ctr = ctr.unsqueeze(1)
    ctr_loc = ctr_loc.unsqueeze(0)

    # distance: [K, H*W]
    distance = paddle.norm((ctr - ctr_loc).astype('float32'), axis=-1)

    # finds center with minimum distance at each location, offset by 1, to reserve id=0 for stuff
    instance_id = paddle.argmin(
        distance, axis=0).reshape((1, height, width)) + 1

    return instance_id


def get_instance_segmentation(semantic,
                              ctr_hmp,
                              offset,
                              thing_list,
                              threshold=0.1,
                              nms_kernel=3,
                              top_k=None):
    """
    Post-processing for instance segmentation, gets class agnostic instance id map.

    Args:
        semantic (Tensor): A Tensor of shape [1, H, W], predicted semantic label.
        ctr_hmp (Tensor): A Tensor of shape [1, H, W] of raw center heatmap output, where N is the batch size,
            for consistent, we only support N=1.
        offsets (Tensor): A Tensor of shape [2, H, W] of raw offset output, where N is the batch size,
            for consistent, we only support N=1. The order of second dim is (offset_y, offset_x).
        thing_list (list): A List of thing class id.
        threshold (float, optional): A Float, threshold applied to center heatmap score. Default: 0.1.
        nms_kernel (int, optional): An Integer, NMS max pooling kernel size. Default: 3.
        top_k (int, optional): An Integer, top k centers to keep. Default: None.

    Returns:
        Tensor: Instance segmentation results which shape is [1, H, W].
        Tensor: A Tensor of shape [1, K, 2] where K is the number of center points. The order of second dim is (y, x).
    """
    thing_seg = paddle.zeros_like(semantic)
    for thing_class in thing_list:
        thing_seg = thing_seg + (semantic == thing_class).astype('int64')
    thing_seg = (thing_seg > 0).astype('int64')
    center = find_instance_center(
        ctr_hmp, threshold=threshold, nms_kernel=nms_kernel, top_k=top_k)
    if center is None:
        return paddle.zeros_like(semantic), center
    ins_seg = group_pixels(center, offset)
    return thing_seg * ins_seg, center.unsqueeze(0)


def merge_semantic_and_instance(semantic, instance, label_divisor, thing_list,
                                stuff_area, ignore_index):
    """
    Post-processing for panoptic segmentation, by merging semantic segmentation label and class agnostic
        instance segmentation label.

    Args:
        semantic (Tensor): A Tensor of shape [1, H, W], predicted semantic label.
        instance (Tensor): A Tensor of shape [1, H, W], predicted instance label.
        label_divisor (int): An Integer, used to convert panoptic id = semantic id * label_divisor + instance_id.
        thing_list (list): A List of thing class id.
        stuff_area (int): An Integer, remove stuff whose area is less tan stuff_area.
        ignore_index (int): Specifies a value that is ignored.

    Returns:
        Tensor: A Tensor of shape [1, H, W] . The pixels whose value equaling ignore_index is ignored.
            The stuff class is represented as format like class_id, while
            thing class as class_id * label_divisor + ins_id and ins_id begin from 1.
    """
    # In case thing mask does not align with semantic prediction
    pan_seg = paddle.zeros_like(semantic) + ignore_index
    thing_seg = instance > 0
    semantic_thing_seg = paddle.zeros_like(semantic)
    for thing_class in thing_list:
        semantic_thing_seg += semantic == thing_class

    # keep track of instance id for each class
    class_id_tracker = {}

    # paste thing by majority voting
    ins_ids = paddle.unique(instance)
    for ins_id in ins_ids:
        if ins_id == 0:
            continue
        # Make sure only do majority voting within semantic_thing_seg
        thing_mask = paddle.logical_and(instance == ins_id,
                                        semantic_thing_seg == 1)
        if paddle.all(paddle.logical_not(thing_mask)):
            continue
        # get class id for instance of ins_id
        sem_ins_id = paddle.gather(
            semantic.reshape((-1, )),
            paddle.nonzero(thing_mask.reshape((
                -1, ))))  # equal to semantic[thing_mask]
        v, c = paddle.unique(sem_ins_id, return_counts=True)
        class_id = paddle.gather(v, c.argmax())
        class_id = int(class_id)
        if class_id in class_id_tracker:
            new_ins_id = class_id_tracker[class_id]
        else:
            class_id_tracker[class_id] = 1
            new_ins_id = 1
        class_id_tracker[class_id] += 1

        # pan_seg[thing_mask] = class_id * label_divisor + new_ins_id
        pan_seg = pan_seg * (paddle.logical_not(thing_mask)) + (
            class_id * label_divisor + new_ins_id) * thing_mask.astype('int64')

    # paste stuff to unoccupied area
    class_ids = paddle.unique(semantic)
    for class_id in class_ids:
        if class_id.numpy() in thing_list:
            # thing class
            continue
        # calculate stuff area
        stuff_mask = paddle.logical_and(semantic == class_id,
                                        paddle.logical_not(thing_seg))
        area = paddle.sum(stuff_mask.astype('int64'))
        if area >= stuff_area:
            # pan_seg[stuff_mask] = class_id
            pan_seg = pan_seg * (paddle.logical_not(stuff_mask)
                                 ) + stuff_mask.astype('int64') * class_id

    return pan_seg


def inference(
        model,
        im,
        transforms,
        thing_list,
        label_divisor,
        stuff_area,
        ignore_index,
        threshold=0.1,
        nms_kernel=3,
        top_k=None,
        ori_shape=None, ):
    """
    Inference for image.

    Args:
        model (paddle.nn.Layer): model to get logits of image.
        im (Tensor): the input image.
        transforms (list): Transforms for image.
        thing_list (list): A List of thing class id.
        label_divisor (int): An Integer, used to convert panoptic id = semantic id * label_divisor + instance_id.
        stuff_area (int): An Integer, remove stuff whose area is less tan stuff_area.
        ignore_index (int): Specifies a value that is ignored.
        threshold (float, optional): A Float, threshold applied to center heatmap score. Default: 0.1.
        nms_kernel (int, optional): An Integer, NMS max pooling kernel size. Default: 3.
        top_k (int, optional): An Integer, top k centers to keep. Default: None.
        ori_shape (list. optional): Origin shape of image. Default: None.

    Returns:
        list: A list of [semantic, semantic_softmax, instance, panoptic, ctr_hmp].
            semantic: Semantic segmentation results with shape [1, 1, H, W], which value is 0, 1, 2...
            semantic_softmax: A Tensor represent probabilities for each class, which shape is [1, num_classes, H, W].
            instance: Instance segmentation results with class agnostic, which value is 0, 1, 2, ..., and 0 is stuff.
            panoptic: Panoptic segmentation results which value is ignore_index, stuff_id, thing_id * label_divisor + ins_id , ins_id >= 1.
    """
    logits = model(im)
    # semantic: [1, c, h, w], center: [1, 1, h, w], offset: [1, 2, h, w]
    semantic, ctr_hmp, offset = logits
    semantic = paddle.argmax(semantic, axis=1, keepdim=True)
    semantic = semantic.squeeze(0)  # shape: [1, h, w]
    semantic_softmax = F.softmax(logits[0], axis=1).squeeze()
    ctr_hmp = ctr_hmp.squeeze(0)  # shape: [1, h, w]
    offset = offset.squeeze(0)  # shape: [2, h, w]

    instance, center = get_instance_segmentation(
        semantic=semantic,
        ctr_hmp=ctr_hmp,
        offset=offset,
        thing_list=thing_list,
        threshold=threshold,
        nms_kernel=nms_kernel,
        top_k=top_k)
    panoptic = merge_semantic_and_instance(semantic, instance, label_divisor,
                                           thing_list, stuff_area, ignore_index)

    # Recover to origin shape
    # semantic: 0, 1, 2, 3...
    # instance: 0, 1, 2, 3, 4,  5... and the 0 is stuff.
    # panoptic: ignore_index, stuff_id, thing_id * label_divisor + ins_id , ins_id >= 1.
    results = [semantic, semantic_softmax, instance, panoptic, ctr_hmp]
    if ori_shape is not None:
        results = [i.unsqueeze(0) for i in results]
        results = [
            reverse_transform(
                i, ori_shape=ori_shape, transforms=transforms) for i in results
        ]

    return results