README.md 2.66 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# PaddleLabel

[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Python 3.6](https://img.shields.io/badge/python-3.6+-blue.svg)](https://www.python.org/downloads/release/python-360/) [![PyPI version](https://badge.fury.io/py/pplabel.svg)](https://badge.fury.io/py/pplabel) [![Downloads](https://pepy.tech/badge/pplabel)](https://pepy.tech/project/pplabel) <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-blue.svg"></a>

<!-- <a href=""><img src="https://img.shields.io/badge/QQ_Group-1234567-52B6EF?style=social&logo=tencent-qq&logoColor=000&logoWidth=20"></a> -->

PaddleLabel aims to become an effective and flexible data annotation tool. There are three parts to this project. This repo contains backend implementation. [PaddleLabel-Frontend](https://github.com/PaddleCV-SIG/PaddleLabel-Frontend) contains the React/Antd frontend. [PaddleLabel-ML](https://github.com/PaddleCV-SIG/PaddleLabel-ML) contains the machine learning backend for automatic and interactive models.

## Install

Installing in a new enviroment is not required but suggested.

```python
conda create -n pplabel python=3.9
conda activate pplabel
```

### pip

```shell
pip install paddlelabel
paddlelabel
```

paddlelabel is now running at [http://127.0.0.1:17995](http://127.0.0.1:17995)

### source

First clone this repo for backend code.

```shell
git clone https://github.com/PaddleCV-SIG/PaddleLabel
```

Then clone and build frontend

```shell
git clone https://github.com/PaddleCV-SIG/PaddleLabel-Frontend
cd PaddleLabel-Frontend
npm install -g yarn
yarn
npm run build
cd ..
```

The last step is to copy built frontend to

```shell
cd PaddleLabel
pip install -r requirements.txt
mkdir paddlelabel/static/
cp -r ../PaddleLabel-Frontend/dist/* paddlelabel/static/

python setup.py install
```

## Run

After installation, run PaddleLabel from command line with

```shell
paddlelabel
```

PaddleLabel is now avaliable at [http://127.0.0.1:17995](http://127.0.0.1:17995)

You can also choose to expose the service to lan. This way it's possbile to run the service on a computer and annotate with a tablet.

```shell
paddlelabel --lan
```

## Dataset Import/Export

PaddleLabel currently support image classification, object detection and image segmentation projects. Please refer to the [Dataset File Structure Documentation](project/dataset_file_structure.md) for more details.

## Release Notes

- 2022.5.31: v0.1.0 [1] Support image classification, detection and segmentations. [2] Interactive image segmentation with EISeg models

## Contribute

Please refer to the [Developers Guide](developers_guide.md) for details on backend implementation.